Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The thyroid hormone-αvβ3 integrin axis in ovarian cancer: regulation of gene transcription and MAPK-dependent proliferation

Subjects

Abstract

Ovarian carcinoma is the fifth common cause of cancer death in women, despite advanced therapeutic approaches. αvβ3 integrin, a plasma membrane receptor, binds thyroid hormones (L-thyroxine, T4; 3,5,3’-triiodo-L-thyronine, T3) and is overexpressed in ovarian cancer. We have demonstrated selective binding of fluorescently labeled hormones to αvβ3-positive ovarian cancer cells but not to integrin-negative cells. Physiologically relevant T3 (1 nM) and T4 (100 nM) concentrations in OVCAR-3 (high αvβ3) and A2780 (low αvβ3) cells promoted αv and β3 transcription in association with basal integrin levels. This transcription was effectively blocked by RGD (Arg–Gly–Asp) peptide and neutralizing αvβ3 antibodies, excluding T3-induced β3 messenger RNA, suggesting subspecialization of T3 and T4 binding to the integrin receptor pocket. We have provided support for extracellular regulated kinase (ERK)-mediated transcriptional regulation of the αv monomer by T3 and of β3 monomer by both hormones and documented a rapid (30–120 min) and dose-dependent (0.1–1000 nM) ERK activation. OVCAR-3 cells and αvβ3-deficient HEK293 cells treated with αvβ3 blockers confirmed the requirement for an intact thyroid hormone-integrin interaction in ERK activation. In addition, novel data indicated that T4, but not T3, controls integrin's outside-in signaling by phosphorylating tyrosine 759 in the β3 subunit. Both hormones induced cell proliferation (cell counts), survival (Annexin-PI), viability (WST-1) and significantly reduced the expression of genes that inhibit cell cycle (p21, p16), promote mitochondrial apoptosis (Nix, PUMA) and tumor suppression (GDF-15, IGFBP-6), particularly in cells with high integrin expression. At last, we have confirmed that hypothyroid environment attenuated ovarian cancer growth using a novel experimental platform that exploited paired euthyroid and severe hypothyroid serum samples from human subjects. To conclude, our data define a critical role for thyroid hormones as potent αvβ3-ligands, driving ovarian cancer cell proliferation and suggest that disruption of this axis may present a novel treatment strategy in this aggressive disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jayson GC, Kohn EC, Kitchener HC, Ledermann JA . Ovarian cancer. Lancet 2014; 384: 1376–1388.

    PubMed  Google Scholar 

  2. Liu J, Matulonis UA . New strategies in ovarian cancer: translating the molecular complexity of ovarian cancer into treatment advances. Clin Cancer Res 2014; 20: 5150–5156.

    CAS  PubMed  Google Scholar 

  3. Siegel R, Ma J, Zou Z, Jemal A . Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9–29.

    Article  PubMed  Google Scholar 

  4. Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC . Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 2001; 22: 255–288.

    CAS  PubMed  Google Scholar 

  5. Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ et al. Focus on epithelial ovarian cancer. Cancer Cell 2004; 5: 19–24.

    CAS  PubMed  Google Scholar 

  6. Carduner L, Leroy-Dudal J, Picot CR, Gallet O, Carreiras F, Kellouche S . Ascites-induced shift along epithelial-mesenchymal spectrum in ovarian cancer cells: enhancement of their invasive behavior partly dependant on alphav integrins. Clin Exp Metastasis 2014; 31: 675–688.

    CAS  PubMed  Google Scholar 

  7. Hapke S, Kessler H, Luber B, Benge A, Hutzler P, Hofler H et al. Ovarian cancer cell proliferation and motility is induced by engagement of integrin alpha(v)beta3/Vitronectin interaction. Biol Chem 2003; 384: 1073–1083.

    CAS  PubMed  Google Scholar 

  8. Liapis H, Adler LM, Wick MR, Rader JS . Expression of alpha(v)beta3 integrin is less frequent in ovarian epithelial tumors of low malignant potential in contrast to ovarian carcinomas. Hum Pathol 1997; 28: 443–449.

    CAS  PubMed  Google Scholar 

  9. Desgrosellier JS, Cheresh DA . Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010; 10: 9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo W, Giancotti F . Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 2004; 5: 816–826.

    CAS  PubMed  Google Scholar 

  11. Landen CN, Kim TJ, Lin YG, Merritt WM, Kamat AA, Han LY et al. Tumor-selective response to antibody-mediated targeting of alphavbeta3 integrin in ovarian cancer. Neoplasia 2008; 10: 1259–1267.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Boger C, Kalthoff H, Goodman SL, Rocken C . Validation and comparison of anti-alphavbeta3 and anti-alphavbeta5 rabbit monoclonal versus murine monoclonal antibodies in four different tumor entities. Appl Immunohistochem Mol Morphol 2013; 21: 553–560.

    PubMed  Google Scholar 

  13. Cannistra SA, Ottensmeier C, Niloff J, Orta B, DiCarlo J . Expression and function of beta 1 and alpha v beta 3 integrins in ovarian cancer. Gynecol Oncol 1995; 58: 216–225.

    CAS  PubMed  Google Scholar 

  14. Rathinam R, Alahari SK . Important role of integrins in the cancer biology. Cancer Metastasis Rev 2010; 29: 223–237.

    CAS  PubMed  Google Scholar 

  15. Wang Y, Liu J, Lin B, Wang C, Li Q, Liu S et al. Study on the expression and clinical significances of lewis y antigen and integrin alphav, beta3 in epithelial ovarian tumors. Int J Mol Sci 2011; 12: 3409–3421.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cruet-Hennequart S, Maubant S, Luis J, Gauduchon P, Staedel C, Dedhar S . alpha(v) integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene 2003; 22: 1688–1702.

    CAS  PubMed  Google Scholar 

  17. Davis PJ, Mousa SA, Cody V, Tang HY, Lin HY . Small molecule hormone or hormone-like ligands of integrin alphaVbeta3: implications for cancer cell behavior. Horm Cancer 2013; 4: 335–342.

    CAS  PubMed  Google Scholar 

  18. Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S et al. Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 2005; 146: 2864–2871.

    CAS  PubMed  Google Scholar 

  19. Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY . Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol 2011; 51: 99–115.

    CAS  PubMed  Google Scholar 

  20. Pascual A, Aranda A . Thyroid hormone receptors, cell growth and differentiation. Biochim Biophys Acta 2013; 1830: 3908–3916.

    CAS  PubMed  Google Scholar 

  21. Dittrich R, Beckmann MW, Oppelt PG, Hoffmann I, Lotz L, Kuwert T et al. Thyroid hormone receptors and reproduction. J Reprod Immunol 2011; 90: 58–66.

    CAS  PubMed  Google Scholar 

  22. Krassas GE, Poppe K, Glinoer D . Thyroid function and human reproductive health. Endocr Rev 2010; 31: 702–755.

    CAS  PubMed  Google Scholar 

  23. Rae MT, Gubbay O, Kostogiannou A, Price D, Critchley HO, Hillier SG . Thyroid hormone signaling in human ovarian surface epithelial cells. J Clin Endocrinol Metab 2007; 92: 322–327.

    CAS  PubMed  Google Scholar 

  24. Verga Falzacappa C, Panacchia L, Bucci B, Stigliano A, Cavallo MG, Brunetti E et al. 3,5,3'-triiodothyronine (T3) is a survival factor for pancreatic beta-cells undergoing apoptosis. J Cell Physiol 2006; 206: 309–321.

    PubMed  Google Scholar 

  25. Cody V, Davis PJ, Davis FB . Molecular modeling of the thyroid hormone interactions with alpha v beta 3 integrin. Steroids 2007; 72: 165–170.

    CAS  PubMed  Google Scholar 

  26. Lin HY, Sun M, Tang HY, Lin C, Luidens MK, Mousa SA et al. L-Thyroxine vs. 3,5,3'-triiodo-L-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell Physiol 2009; 296: C980–C991.

    CAS  PubMed  Google Scholar 

  27. Yehuda-Shnaidman E, Kalderon B, Bar-Tana J . Thyroid hormone, thyromimetics, and metabolic efficiency. Endocr Rev 2014; 35: 35–58.

    CAS  PubMed  Google Scholar 

  28. Cohen K, Ellis M, Khoury S, Davis PJ, Hercbergs A, Ashur-Fabian O . Thyroid hormone is a MAPK-dependent growth factor for human myeloma cells acting via alphavbeta3 integrin. Mol Cancer Res 2011; 9: 1385–1394.

    CAS  PubMed  Google Scholar 

  29. Cohen K, Ellis M, Shinderman E, Khoury S, Davis PJ, Hercbergs A et al. Relevance of the thyroid hormones-alphavbeta3 pathway in primary myeloma bone marrow cells and to bortezomib action. Leuk Lymphoma 2014; 56: 1107–1114.

    PubMed  Google Scholar 

  30. Cohen K, Flint N, Shalev S, Erez D, Baharal T, Davis PJ et al. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via alphavbeta3 integrin in myeloma cells. Oncotarget 2014; 5: 6312–6322.

    PubMed  PubMed Central  Google Scholar 

  31. Beral V, Bull D, Green J, Reeves G . Ovarian cancer and hormone replacement therapy in the Million Women Study. Lancet 2007; 369: 1703–1710.

    CAS  PubMed  Google Scholar 

  32. Edson MA, Nagaraja AK, Matzuk MM . The mammalian ovary from genesis to revelation. Endocr Rev 2009; 30: 624–712.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hanna L, Adams M . Prevention of ovarian cancer. Best Pract Res Clin Obstet Gynaecol 2006; 20: 339–362.

    PubMed  Google Scholar 

  34. Ness R, Grisso J, Cottreau C, Klapper J, Vergona R, Wheeler J et al. Factors related to inflammation of the ovarian epithelium and risk of ovarian cancer. Epidemiology 2000; 11: 111–117.

    CAS  PubMed  Google Scholar 

  35. Brinton LA, Sakoda LC, Frederiksen K, Sherman ME, Kjaer SK, Graubard BI et al. Relationships of uterine and ovarian tumors to pre-existing chronic conditions. Gynecol Oncol 2007; 107: 487–494.

    PubMed  PubMed Central  Google Scholar 

  36. Kang JH, Kueck AS, Stevens R, Curhan G, De Vivo I, Rosner B et al. A large cohort study of hypothyroidism and hyperthyroidism in relation to gynecologic cancers. Obstet Gynecol Int 2013; 2013: 743721.

    PubMed  PubMed Central  Google Scholar 

  37. Hercbergs AH, Ashur-Fabian O, Garfield D . Thyroid hormones and cancer: clinical studies of hypothyroidism in oncology. Curr Opin Endocrinol Diabetes Obes 2010; 17: 432–436.

    CAS  PubMed  Google Scholar 

  38. Brix K, Fuhrer D, Biebermann H . Molecules important for thyroid hormone synthesis and action - known facts and future perspectives. Thyroid Res 2011; 4: S9.

    PubMed  PubMed Central  Google Scholar 

  39. Bassett JH, Harvey CB, Williams GR . Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Mol Cell Endocrinol 2003; 213: 1–11.

    CAS  PubMed  Google Scholar 

  40. Incerpi S, Luly P, De Vito P, Farias RN . Short-term effects of thyroid hormones on the Na/H antiport in L-6 myoblasts: high molecular specificity for 3,3',5-triiodo-L-thyronine. Endocrinology 1999; 140: 683–689.

    CAS  PubMed  Google Scholar 

  41. Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 2004; 10: 638–642.

    CAS  PubMed  Google Scholar 

  42. Incerpi S . Thyroid hormones: rapid reply by surface delivery only. Endocrinology 2005; 146: 2861–2863.

    CAS  PubMed  Google Scholar 

  43. Lin HY, Martino LJ, Wilcox BD, Davis FB, Gordinier JK, Davis PJ . Potentiation by thyroid hormone of human IFN-gamma-induced HLA-DR expression. J Immunol 1998; 161: 843–849.

    CAS  PubMed  Google Scholar 

  44. Siegrist-Kaiser CA, Juge-Aubry C, Tranter MP, Ekenbarger DM, Leonard JL . Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone. J Biol Chem 1990; 265: 5296–5302.

    CAS  PubMed  Google Scholar 

  45. Storey NM, Gentile S, Ullah H, Russo A, Muessel M, Erxleben C et al. Rapid signaling at the plasma membrane by a nuclear receptor for thyroid hormone. Proc Natl Acad Sci USA 2006; 103: 5197–5201.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng S, Leonard J, Davis P . Molecular aspects of thyroid hormone actions. Endocr Rev 2010; 31: 139–170.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiong S, Chirala SS, Hsu MH, Wakil SJ . Identification of thyroid hormone response elements in the human fatty acid synthase promoter. Proc Natl Acad Sci USA 1998; 95: 12260–12265.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamauchi M, Kambe F, Cao X, Lu X, Kozaki Y, Oiso Y et al. Thyroid hormone activates adenosine 5'-monophosphate-activated protein kinase via intracellular calcium mobilization and activation of calcium/calmodulin-dependent protein kinase kinase-beta. Mol Endocrinol 2008; 22: 893–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Losel R, Wehling M . Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 2003; 4: 46–56.

    PubMed  Google Scholar 

  50. Colombo R, Mingozzi M, Belvisi L, Arosio D, Piarulli U, Carenini N et al. Synthesis and biological evaluation (in vitro and in vivo of cyclic arginine-glycine-aspartate (RGD) peptidomimetic-paclitaxel conjugates targeting integrin alphaVbeta3. J Med Chem 2012; 55: 10460–10474.

    CAS  PubMed  Google Scholar 

  51. Dijkgraaf I, Kruijtzer JA, Frielink C, Corstens FH, Oyen WJ, Liskamp RM et al. Alpha v beta 3 integrin-targeting of intraperitoneally growing tumors with a radiolabeled RGD peptide. Int J Cancer 2007; 120: 605–610.

    CAS  PubMed  Google Scholar 

  52. Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS et al. Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Res 2002; 62: 6146–6151.

    CAS  PubMed  Google Scholar 

  53. Zhao Y, Bachelier R, Treilleux I, Pujuguet P, Peyruchaud O, Baron R et al. Tumor alphavbeta3 integrin is a therapeutic target for breast cancer bone metastases. Cancer Res 2007; 67: 5821–5830.

    CAS  PubMed  Google Scholar 

  54. Domcke S, Sinha R, Levine DA, Sander C, Schultz N . Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun 2013; 4: 2126.

    PubMed  Google Scholar 

  55. Huang CY, Yu HS, Lai TY, Yeh YL, Su CC, Hsu HH et al. Leptin increases motility and integrin up-regulation in human prostate cancer cells. J Cell Physiol 2011; 226: 1274–1282.

    CAS  PubMed  Google Scholar 

  56. Yu Y, Shi X, Shu Z, Xie T, Huang K, Wei L et al. Stromal cell-derived factor-1 (SDF-1)/CXCR4 axis enhances cellular invasion in ovarian carcinoma cells via integrin beta1 and beta3 expressions. Oncol Res 2013; 21: 217–225.

    PubMed  Google Scholar 

  57. Huang YC, Hsiao YC, Chen YJ, Wei YY, Lai TH, Tang CH . Stromal cell-derived factor-1 enhances motility and integrin up-regulation through CXCR4, ERK and NF-kappaB-dependent pathway in human lung cancer cells. Biochem Pharmacol 2007; 74: 1702–1712.

    CAS  PubMed  Google Scholar 

  58. De S, Razorenova O, McCabe NP, O'Toole T, Qin J, Byzova TV . VEGF-integrin interplay controls tumor growth and vascularization. Proc Natl Acad Sci USA 2005; 102: 7589–7594.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Freindorf M, Furlani TR, Kong J, Cody V, Davis FB, Davis PJ . Combined QM/MM study of thyroid and steroid hormone analogue interactions with alphavbeta3 integrin. J Biomed Biotechnol 2012; 2012: 959057.

    PubMed  PubMed Central  Google Scholar 

  60. Wu W, Dong YW, Shi PC, Yu M, Fu D, Zhang CY et al. Regulation of integrin alphaV subunit expression by sulfatide in hepatocellular carcinoma cells. J Lipid Res 2013; 54: 936–952.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Woods D, Cherwinski H, Venetsanakos E, Bhat A, Gysin S, Humbert M et al. Induction of beta3-integrin gene expression by sustained activation of the Ras-regulated Raf-MEK-extracellular signal-regulated kinase signaling pathway. Mol Cell Biol 2001; 21: 3192–3205.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin HY, Su YF, Hsieh MT, Lin S, Meng R, London D et al. Nuclear monomeric integrin alphav in cancer cells is a coactivator regulated by thyroid hormone. Faseb J 2013; 27: 3209–3216.

    CAS  PubMed  Google Scholar 

  63. Davis PJ, Shih A, Lin HY, Martino LJ, Davis FB . Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J. Biol Chem 2000; 275: 38032–38039.

    CAS  Google Scholar 

  64. Illario M, Cavallo AL, Monaco S, Di Vito E, Mueller F, Marzano LA et al. Fibronectin-induced proliferation in thyroid cells is mediated by alphavbeta3 integrin through Ras/Raf-1/MEK/ERK and calcium/CaMKII signals. J Clin Endocrinol Metab 2005; 90: 2865–2873.

    CAS  PubMed  Google Scholar 

  65. Lin H, Tang H, Shih A, Keating T, Cao J, Davis P et al. Thyroid hormone is a MAPK-dependent growth factor for thyroid cancer cells and is anti-apoptotic. Steroids 2007; 72: 180–187.

    CAS  PubMed  Google Scholar 

  66. Lin HY, Tang HY, Keating T, Wu YH, Shih A, Hammond D et al. Resveratrol is pro-apoptotic and thyroid hormone is anti-apoptotic in glioma cells: both actions are integrin and ERK mediated. Carcinogenesis 2008; 29: 62–69.

    CAS  PubMed  Google Scholar 

  67. Moeller LC, Broecker-Preuss M . Transcriptional regulation by nonclassical action of thyroid hormone. Thyroid Res 2011; 4: S6.

    PubMed  PubMed Central  Google Scholar 

  68. Scarlett A, Parsons MP, Hanson PL, Sidhu KK, Milligan TP, Burrin JM . Thyroid hormone stimulation of extracellular signal-regulated kinase and cell proliferation in human osteoblast-like cells is initiated at integrin alphaVbeta3. J Endocrinol 2008; 196: 509–517.

    CAS  PubMed  Google Scholar 

  69. Tang H-Y, Lin H-Y, Zhang S, Davis FB, Davis PJ . Thyroid hormone causes mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology 2004; 145: 3265–3272.

    CAS  PubMed  Google Scholar 

  70. Miller CR, Oliver KE, Farley JH . MEK1/2 inhibitors in the treatment of gynecologic malignancies. Gynecol Oncol 2014; 133: 128–137.

    CAS  PubMed  Google Scholar 

  71. Blystone SD . Kinetic regulation of beta 3 integrin tyrosine phosphorylation. J Biol Chem 2002; 277: 46886–46890.

    CAS  PubMed  Google Scholar 

  72. Courter DL, Lomas L, Scatena M, Giachelli CM . Src kinase activity is required for integrin alphaVbeta3-mediated activation of nuclear factor-kappaB. J Biol Chem 2005; 280: 12145–12151.

    CAS  PubMed  Google Scholar 

  73. Datta A, Huber F, Boettiger D . Phosphorylation of beta3 integrin controls ligand binding strength. J Biol Chem 2002; 277: 3943–3949.

    CAS  PubMed  Google Scholar 

  74. Xi X, Flevaris P, Stojanovic A, Chishti A, Phillips DR, Lam SC et al. Tyrosine phosphorylation of the integrin beta 3 subunit regulates beta 3 cleavage by calpain. J Biol Chem 2006; 281: 29426–29430.

    CAS  PubMed  Google Scholar 

  75. Davis F, Tang H, Shih A, Keating T, Lansing L, Hercbergs A et al. Acting via a cell surface receptor, thyroid hormone is a growth factor for glioma cells. Cancer Res 2006; 66: 7270–7275.

    CAS  PubMed  Google Scholar 

  76. Hall LC, Salazar EP, Kane SR, Liu N . Effects of thyroid hormones on human breast cancer cell proliferation. J Steroid Biochem Mol Biol 2008; 109: 57–66.

    CAS  PubMed  Google Scholar 

  77. Theodossiou C, Skrepnik N, Robert EG, Prasad C, Axelrad TW, Schapira DV et al. Propylthiouracil-induced hypothyroidism reduces xenograft tumor growth in athymic nude mice. Cancer 1999; 86: 1596–1601.

    CAS  PubMed  Google Scholar 

  78. Martinez MB, Ruan M, Fitzpatrick LA . Altered response to thyroid hormones by breast and ovarian cancer cells. Anticancer Res 2000; 20: 4141–4146.

    CAS  PubMed  Google Scholar 

  79. Moriggi G, Verga Falzacappa C, Mangialardo C, Michienzi S, Stigliano A, Brunetti E et al. Thyroid hormones (T3 and T4): dual effect on human cancer cell proliferation. Anticancer Res 2011; 31: 89–96.

    CAS  PubMed  Google Scholar 

  80. Saegusa M, Machida BD, Okayasu I . Possible associations among expression of p14(ARF), p16(INK4a), p21(WAF1/CIP1), p27(KIP1), and p53 accumulation and the balance of apoptosis and cell proliferation in ovarian carcinomas. Cancer 2001; 92: 1177–1189.

    CAS  PubMed  Google Scholar 

  81. Malumbres M, Barbacid M . Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009; 9: 153–166.

    CAS  PubMed  Google Scholar 

  82. Zhang J, Ney PA . Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 2009; 16: 939–946.

    CAS  PubMed  Google Scholar 

  83. Wang X, Baek SJ, Eling TE . The diverse roles of nonsteroidal anti-inflammatory drug activated gene (NAG-1/GDF15) in cancer. Biochem Pharmacol 2013; 85: 597–606.

    CAS  PubMed  Google Scholar 

  84. Bach LA . Recent insights into the actions of IGFBP-6. J Cell Commun Signal 2015; 9: 189–200.

    PubMed  PubMed Central  Google Scholar 

  85. Stromblad S, Becker JC, Yebra M, Brooks PC, Cheresh DA . Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis. J Clin Invest 1996; 98: 426–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lin HY, Landersdorfer CB, London D, Meng R, Lim CU, Lin C et al. Pharmacodynamic modeling of anti-cancer activity of tetraiodothyroacetic acid in a perfused cell culture system. PLoS Comput Biol 2011; 7: e1001073.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yalcin M, Lin HY, Sudha T, Bharali DJ, Meng R, Tang HY et al. Response of human pancreatic cancer cell xenografts to tetraiodothyroacetic acid nanoparticles. Horm Cancer 2013; 4: 176–185.

    CAS  PubMed  Google Scholar 

  88. Sterle HA, Valli E, Cayrol F, Paulazo MA, Martinel Lamas DJ, Diaz Flaque MC et al. Thyroid status modulates T lymphoma growth via cell cycle regulatory proteins and angiogenesis. J Endocrinol 2014; 222: 243–255.

    CAS  PubMed  Google Scholar 

  89. Chambery D, De Galle B, Ehrenborg E, Babajko S . Multi-hormonal regulation of IGFBP-6 expression in human neuroblastoma cells. Growth Horm IGF Res 2000; 10: 349–359.

    CAS  PubMed  Google Scholar 

  90. Hercbergs A, Johnson RE, Ashur-Fabian O, Garfield DH, Davis PJ . Medically induced euthyroid hypothyroxinemia may extend survival in compassionate need cancer patients: an observational study. Oncologist 2015; 20: 72–76.

    CAS  PubMed  Google Scholar 

  91. Davis PJ, Glinsky GV, Lin HY, Leith JT, Hercbergs A, Tang HY et al. Cancer cell gene expression modulated from plasma membrane integrin alphavbeta3 by thyroid hormone and nanoparticulate tetrac. Front Endocrinol (Lausanne) 2015; 5: 240.

    Google Scholar 

  92. Davis PJ, Lin HY, Sudha T, Yalcin M, Tang HY, Hercbergs A et al. Nanotetrac targets integrin alphavbeta3 on tumor cells to disorder cell defense pathways and block angiogenesis. Onco Targets Ther 2014; 7: 1619–1624.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mousa SA, Yalcin M, Bharali DJ, Meng R, Tang HY, Lin HY et al. Tetraiodothyroacetic acid and its nanoformulation inhibit thyroid hormone stimulation of non-small cell lung cancer cells in vitro and its growth in xenografts. Lung Cancer 2012; 76: 39–45.

    PubMed  Google Scholar 

  94. Yalcin M, Lin HY, Sudha T, Bharali DJ, Meng R, Tang HY et al. Response of human pancreatic cancer cell xenografts to tetraiodothyroacetic acid nanoparticles. Horm Cancer 2012; 4: 176–185.

    Google Scholar 

Download references

Acknowledgements

The work of Elena Shinderman Maman and Keren Cohen was done in partial fulfillment of the requirements for a PhD degree and of Chen Weingarten MSc degree from the Sackler Faculty of Medicine, Tel Aviv University, Israel. This work was partially supported by the Li Ka Shing Foundation (LKSF). We are grateful to Professor Jean-Luc Col (Institut Albert Bonniot and Universite' Joseph Fourier, France) for HEK293 β3 and β1 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Ashur-Fabian.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinderman-Maman, E., Cohen, K., Weingarten, C. et al. The thyroid hormone-αvβ3 integrin axis in ovarian cancer: regulation of gene transcription and MAPK-dependent proliferation. Oncogene 35, 1977–1987 (2016). https://doi.org/10.1038/onc.2015.262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.262

This article is cited by

Search

Quick links