Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gankyrin facilitates follicle-stimulating hormone-driven ovarian cancer cell proliferation through the PI3K/AKT/HIF-1α/cyclin D1 pathway

Subjects

Abstract

Gankyrin is a regulatory subunit of the 26kD proteasome complex. As a novel oncoprotein, gankyrin is expressed aberrantly in cancers from several different sites and has been shown to contribute to oncogenesis in endometrial and cervical carcinomas. Neither gankyrin’s contribution to the development of epithelial ovarian cancer nor its interaction with follicle-stimulating hormone (FSH)-driven proliferation in ovarian cancer has been studied. Here we have found that gankyrin is overexpressed in ovarian cancers compared with benign ovarian cystadenomas and that gankyrin regulates FSH upregulation of cyclin D1. Importantly, gankyrin regulates PI3K/AKT signaling by downregulating PTEN. Prolonged AKT activation by FSH stimulation of the FSH receptor (FSHR) promotes gankyrin expression, which, in turn, enhances AKT activation by inhibiting PTEN. Overexpression of gankyrin decreases hypoxia inducible factor-1α (HIF-1α) protein levels, but has little effect on HIF-1α mRNA levels, which could be attributed to gankyrin mediating HIF-1α protein stability via the ubiquitin–proteasome pathway. Reduction in HIF-1α protein stability led to attenuation of the binding with cyclin D1 promoter, resulted in abolishment of the negative regulation of cyclin D1 by HIF-1α, which promotes proliferation of ovarian cancer cells. Our results document that gankyrin regulates HIF-1α protein stability and cyclin D1 expression, ultimately mediating FSH-driven ovarian cancer cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Li J, Abushahin N, Pang S, Xiang L, Chambers SK, Fadare O et al. Tubal origin of 'ovarian' low-grade serous carcinoma. Mod Pathol 2011; 24: 1488–1499.

    Article  CAS  PubMed  Google Scholar 

  2. Callahan MJ, Crum CP, Medeiros F, Kindelberger DW, Elvin JA, Garber JE et al. Primary fallopian tube malignancies in BRCA-positive women undergoing surgery for ovarian cancer risk reduction. J Clin Oncol 2007; 25: 3985–3990.

    Article  PubMed  Google Scholar 

  3. Crum CP . Intercepting pelvic cancer in the distal fallopian tube: theories and realities. Mol Oncol 2009; 3: 165–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zheng W, Magid MS, Kramer EE, Chen YT . Follicle-stimulating hormone receptor is expressed in human ovarian surface epithelium and fallopian tube. Am J Pathol 1996; 148: 47–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Konishi I . Gonadotropins and ovarian carcinogenesis: a new era of basic research and its clinical implications. Int J Gynecol Cancer 2006; 16: 16–22.

    Article  CAS  PubMed  Google Scholar 

  6. Lukanova A, Kaaks R . Endogenous hormones and ovarian cancer: epidemiology and current hypotheses. Cancer Epidemiol Biomarkers Prev 2005; 14: 98–107.

    CAS  PubMed  Google Scholar 

  7. Choi JH, Wong AS, Huang HF, Leung PC . Gonadotropins and ovarian cancer. Endocr Rev 2007; 28: 440–461.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Z, Jia L, Feng Y, Zheng W . Overexpression of follicle-stimulating hormone receptor facilitates the development of ovarian epithelial cancer. Cancer Lett 2009; 278: 56–64.

    Article  CAS  PubMed  Google Scholar 

  9. Huang Y, Jin H, Liu Y, Zhou J, Ding J, Cheng KW et al. FSH inhibits ovarian cancer cell apoptosis by up-regulating survivin and down-regulating PDCD6 and DR5. Endocr Relat Cancer 2011; 18: 13–26.

    Article  CAS  PubMed  Google Scholar 

  10. Tao X, Zhao N, Jin H, Zhang Z, Liu Y, Wu J et al. FSH enhances the proliferation of ovarian cancer cells by activating transient receptor potential channel C3. Endocr Relat Cancer 2013; 20: 415–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang Y, Hua K, Zhou X, Jin H, Chen X, Lu X et al. Activation of the PI3K/AKT pathway mediates FSH-stimulated VEGF expression in ovarian serous cystadenocarcinoma. Cell Res 2008; 18: 780–791.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z, Wang Q, Ma J, Yi X, Zhu Y, Xi X et al. Reactive oxygen species regulate FSH-induced expression of vascular endothelial growth factor via Nrf2 and HIF1alpha signaling in human epithelial ovarian cancer. Oncol Rep 2013; 29: 1429–1434.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Z, Zhu Y, Lai Y, Wu X, Feng Z, Yu Y et al. Follicle-stimulating hormone inhibits apoptosis in ovarian cancer cells by regulating the OCT4 stem cell signaling pathway. Int J Oncol 2013; 43: 1194–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lai Y, Zhang X, Zhang Z, Shu Y, Luo X, Yang Y et al. The microRNA-27a: ZBTB10-specificity protein pathway is involved in follicle stimulating hormone-induced VEGF, Cox2 and survivin expression in ovarian epithelial cancer cells. Int J Oncol 2013; 42: 776–784.

    Article  CAS  PubMed  Google Scholar 

  15. Liao H, Zhou Q, Zhang Z, Wang Q, Sun Y, Yi X et al. NRF2 is overexpressed in ovarian epithelial carcinoma and is regulated by gonadotrophin and sex-steroid hormones. Oncol Rep 2012; 27: 1918–1924.

    CAS  PubMed  Google Scholar 

  16. Jia L, Yi XF, Zhang ZB, Zhuang ZP, Li J, Chambers SK et al. Prohibitin as a novel target protein of luteinizing hormone in ovarian epithelial carcinogenesis. Neoplasma 2011; 58: 104–109.

    Article  CAS  PubMed  Google Scholar 

  17. Bai Z, Tai Y, Li W, Zhen C, Gu W, Jian Z et al. Gankyrin activates IL-8 to promote hepatic metastasis of colorectal cancer. Cancer Res 2013; 73: 4548–4558.

    Article  CAS  PubMed  Google Scholar 

  18. Dong LW, Yang GZ, Pan YF, Chen Y, Tan YX, Dai RY et al. The oncoprotein p28GANK establishes a positive feedback loop in beta-catenin signaling. Cell Res 2011; 21: 1248–1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu Y, Zhang J, Qian W, Dong Y, Yang Y, Liu Z et al. Gankyrin is frequently overexpressed in cervical high grade disease and is associated with cervical carcinogenesis and metastasis. PLoS One 2014; 9: e95043.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Higashitsuji H, Itoh K, Nagao T, Dawson S, Nonoguchi K, Kido T et al. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med 2000; 6: 96–99.

    Article  CAS  PubMed  Google Scholar 

  21. Higashitsuji H, Higashitsuji H, Itoh K, Sakurai T, Nagao T, Sumitomo Y et al. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell 2005; 8: 75–87.

    Article  CAS  PubMed  Google Scholar 

  22. Man JH, Liang B, Gu YX, Zhou T, Li AL, Li T et al. Gankyrin plays an essential role in Ras-induced tumorigenesis through regulation of the RhoA/ROCK pathway in mammalian cells. J Clin Invest 2010; 120: 2829–2841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen Y, Li HH, Fu J, Wang XF, Ren YB, Dong LW et al. Oncoprotein p28 GANK binds to RelA and retains NF-kappaB in the cytoplasm through nuclear export. Cell Res 2007; 17: 1020–1029.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Yang Y, Zhang Z, He Y, Liu Z, Yu Y et al. Gankyrin plays an essential role in estrogen-driven and GPR30-mediated endometrial carcinoma cell proliferation via the PTEN/PI3K/AKT signaling pathway. Cancer Lett 2013; 339: 279–287.

    Article  CAS  PubMed  Google Scholar 

  25. Tang S, Yang G, Meng Y, Du R, Li X, Fan R et al. Overexpression of a novel gene gankyrin correlates with the malignant phenotype of colorectal cancer. Cancer Biol Ther 2010; 9: 88–95.

    Article  CAS  PubMed  Google Scholar 

  26. Meng Y, He L, Guo X, Tang S, Zhao X, Du R et al. Gankyrin promotes the proliferation of human pancreatic cancer. Cancer Lett 2010; 297: 9–17.

    Article  CAS  PubMed  Google Scholar 

  27. Winston JT, Pledger WJ . Growth factor regulation of cyclin D1 mRNA expression through protein synthesis-dependent and -independent mechanisms. Mol Biol Cell 1993; 4: 1133–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nichols GE, Williams ME, Gaffey MJ, Stoler MH . Cyclin D1 gene expression in human cervical neoplasia. Mod Pathol 1996; 9: 418–425.

    CAS  PubMed  Google Scholar 

  29. Sui L, Tokuda M, Ohno M, Hatase O, Hando T . The concurrent expression of p27(kip1) and cyclin D1 in epithelial ovarian tumors. Gynecol Oncol 1999; 73: 202–209.

    Article  CAS  PubMed  Google Scholar 

  30. Hung WC, Chai CY, Huang JS, Chuang LY . Expression of cyclin D1 and c-Ki-ras gene product in human epithelial ovarian tumors. Hum Pathol 1996; 27: 1324–1328.

    Article  CAS  PubMed  Google Scholar 

  31. Semczuk A, Jakowicki JA . Alterations of pRb1-cyclin D1-cdk4/6-p16(INK4A) pathway in endometrial carcinogenesis. Cancer Lett 2004; 203: 1–12.

    Article  CAS  PubMed  Google Scholar 

  32. Wen W, Ding J, Sun W, Wu K, Ning B, Gong W et al. Suppression of cyclin D1 by hypoxia-inducible factor-1 via direct mechanism inhibits the proliferation and 5-fluorouracil-induced apoptosis of A549 cells. Cancer Res 2010; 70: 2010–2019.

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Ganta S, Cheng C, Craig R, Ganta RR, Freeman LC . FSH stimulates ovarian cancer cell growth by action on growth factor variant receptor. Mol Cell Endocrinol 2007; 267: 26–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Udhayakumar G, Jayanthi V, Devaraj N, Devaraj H . Interaction of MUC1 with beta-catenin modulates the Wnt target gene cyclinD1 in H. pylori-induced gastric cancer. Mol Carcinog 2007; 46: 807–817.

    Article  CAS  PubMed  Google Scholar 

  35. Umekita Y, Ohi Y, Sagara Y, Yoshida H . Overexpression of cyclinD1 predicts for poor prognosis in estrogen receptor-negative breast cancer patients. Int J Cancer 2002; 98: 415–418.

    Article  CAS  PubMed  Google Scholar 

  36. Elsheikh S, Green AR, Aleskandarany MA, Grainge M, Paish CE, Lambros MB et al. CCND1 amplification and cyclin D1 expression in breast cancer and their relation with proteomic subgroups and patient outcome. Breast Cancer Res Treat 2008; 109: 325–335.

    Article  CAS  PubMed  Google Scholar 

  37. Moreno-Bueno G, Rodriguez-Perales S, Sanchez-Estevez C, Hardisson D, Sarrio D, Prat J et al. Cyclin D1 gene (CCND1) mutations in endometrial cancer. Oncogene 2003; 22: 6115–6118.

    Article  CAS  PubMed  Google Scholar 

  38. Ortiz CM, Ito T, Tanaka E, Tsunoda S, Nagayama S, Sakai Y et al. Gankyrin oncoprotein overexpression as a critical factor for tumor growth in human esophageal squamous cell carcinoma and its clinical significance. Int J Cancer 2008; 122: 325–332.

    Article  CAS  PubMed  Google Scholar 

  39. Zheng T, Hong X, Wang J, Pei T, Liang Y, Yin D et al. Gankyrin promotes tumor growth and metastasis through activation of IL-6/STAT3 signaling in human cholangiocarcinoma. Hepatology 2014; 59: 935–946.

    Article  CAS  PubMed  Google Scholar 

  40. Song X, Wang J, Zheng T, Song R, Liang Y, Bhatta N et al. LBH589 Inhibits proliferation and metastasis of hepatocellular carcinoma via inhibition of gankyrin/STAT3/Akt pathway. Mol Cancer 2013; 12: 114.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li Q, He H, Zhang YL, Li XM, Guo X, Huo R et al. Phosphoinositide 3-kinase p110delta mediates estrogen- and FSH-stimulated ovarian follicle growth. Mol Endocrinol 2013; 27: 1468–1482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ludwig AH, Murawska M, Panek G, Timorek A, Kupryjanczyk J . Androgen, progesterone, and FSH receptor polymorphisms in ovarian cancer risk and outcome. Endocr Relat Cancer 2009; 16: 1005–1016.

    Article  CAS  PubMed  Google Scholar 

  43. Bose CK . Follicle stimulating hormone receptor in ovarian surface epithelium and epithelial ovarian cancer. Oncol Res 2008; 17: 231–238.

    Article  PubMed  Google Scholar 

  44. Wang J, Lin L, Parkash V, Schwartz PE, Lauchlan SC, Zheng W . Quantitative analysis of follicle-stimulating hormone receptor in ovarian epithelial tumors: a novel approach to explain the field effect of ovarian cancer development in secondary mullerian systems. Int J Cancer 2003; 103: 328–334.

    Article  CAS  PubMed  Google Scholar 

  45. Cramer DW, Welch WR . Determinants of ovarian cancer risk. II. Inferences regarding pathogenesis. J Natl Cancer Inst 1983; 71: 717–721.

    CAS  PubMed  Google Scholar 

  46. Brekelmans CT . Risk factors and risk reduction of breast and ovarian cancer. Curr Opin Obstet Gynecol 2003; 15: 63–68.

    Article  PubMed  Google Scholar 

  47. Ohtani K, Sakamoto H, Kikuchi A, Nakayama Y, Idei T, Igarashi N et al. Follicle-stimulating hormone promotes the growth of human epithelial ovarian cancer cells through the protein kinase C-mediated system. Cancer Lett 2001; 166: 207–213.

    Article  CAS  PubMed  Google Scholar 

  48. Riman T, Persson I, Nilsson S . Hormonal aspects of epithelial ovarian cancer: review of epidemiological evidence. Clin Endocrinol (Oxf) 1998; 49: 695–707.

    Article  CAS  Google Scholar 

  49. Choi JH, Choi KC, Auersperg N, Leung PC . Overexpression of follicle-stimulating hormone receptor activates oncogenic pathways in preneoplastic ovarian surface epithelial cells. J Clin Endocrinol Metab 2004; 89: 5508–5516.

    Article  CAS  PubMed  Google Scholar 

  50. Dawson S, Higashitsuji H, Wilkinson AJ, Fujita J, Mayer RJ . Gankyrin: a new oncoprotein and regulator of pRb and p53. Trends Cell Biol 2006; 16: 229–233.

    Article  CAS  PubMed  Google Scholar 

  51. Qiu W, Wu J, Walsh EM, Zhang Y, Chen CY, Fujita J et al. Retinoblastoma protein modulates gankyrin-MDM2 in regulation of p53 stability and chemosensitivity in cancer cells. Oncogene 2008; 27: 4034–4043.

    Article  CAS  PubMed  Google Scholar 

  52. Qian YW, Chen Y, Yang W, Fu J, Cao J, Ren YB et al. p28(GANK) prevents degradation of Oct4 and promotes expansion of tumor-initiating cells in hepatocarcinogenesis. Gastroenterology 2012; 142: 1547–1558.e14.

    Article  CAS  PubMed  Google Scholar 

  53. Chen X, Zhang Z, Feng Y, Fadare O, Wang J, Ai Z et al. Aberrant survivin expression in endometrial hyperplasia: another mechanism of progestin resistance. Mod Pathol 2009; 22: 699–708.

    Article  PubMed  Google Scholar 

  54. Zhang Z, Zhou D, Lai Y, Liu Y, Tao X, Wang Q et al. Estrogen induces endometrial cancer cell proliferation and invasion by regulating the fat mass and obesity-associated gene via PI3K/AKT and MAPK signaling pathways. Cancer Lett 2012; 319: 89–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (grant numbers 81272883, 81202044, 81370074 and 81172478), the Science and Technology Commission of Shanghai Municipality (grant number 12ZR1447600), the Shanghai Municipal Public Health Bureau (grant number XYQ2013119) and the ‘Chenxing Project’ from Shanghai Jiao Tong University to ZZ. The role of YY in this project was partially supported by The National Foundation for Cancer Research and contributions from Stuart and Gaye Lynn Zarrow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z Zhang or Y Feng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Bai, M., Ning, C. et al. Gankyrin facilitates follicle-stimulating hormone-driven ovarian cancer cell proliferation through the PI3K/AKT/HIF-1α/cyclin D1 pathway. Oncogene 35, 2506–2517 (2016). https://doi.org/10.1038/onc.2015.316

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.316

This article is cited by

Search

Quick links