Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Increased TEAD4 expression and nuclear localization in colorectal cancer promote epithelial–mesenchymal transition and metastasis in a YAP-independent manner

Abstract

Dysregulation of the Hippo pathway occurs in a variety of cancers and often correlates with a poor prognosis. To further explore the potential role of Hippo pathway dysregulation in tumor development and progression, we investigated its downstream transcription factor TEAD4 in colorectal cancer (CRC). Increased expression and nuclear localization of TEAD4 were found in a significant portion of CRC tissues, in association with metastasis and a poor prognosis. In CRC cells, TEAD4 knockdown induced the mesenchymal–epithelial transition and decreased cell mobility in vitro and metastasis in vivo. Microarray analysis revealed that TEAD4 promoted cell adhesion and upregulated the epithelial–mesenchymal transition-related transcriptome in CRC cells. Vimentin was identified as a new direct target gene mediating TEAD4 function in CRC cells, whereby forced vimentin expression markedly reversed TEAD4-knockdown-induced cell morphological changes and decreased mobility. Interestingly, rescued expression of both WT TEAD4 and a Y429H mutant can reverse the mesenchymal–epithelial transition and increase vimentin expression, cell mobility and metastatic potential in TEAD4-knockdown CRC cells. The discrepant expression of YAP and TEAD4 in CRC tissues, the rescue ability of TEAD4 mutant defect in YAP binding and no effect on vimentin expression by YAP knockdown in CRC cells, all implicated a YAP-independent manner of TEAD4 function in CRC. Furthermore, vimentin positively correlated and CDH1 reversely correlated with the level of TEAD4 in CRC tissues and xenograft tumors. Our results suggest that TEAD4 nuclear expression can serve as a biomarker for CRC progression and poor prognosis. The transcription factor TEAD4 regulates a pro-metastasis transcription program in a YAP-independent manner in CRC, thus providing a novel mechanism of TEAD4 transcriptional regulation and its oncogenic role in CRC, independently of the Hippo pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Markowitz SD, Bertagnolli MM . Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 2009; 361: 2449–2460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Manfredi S, Lepage C, Hatem C, Coatmeur O, Faivre J, Bouvier A-M . Epidemiology and management of liver metastases from colorectal cancer. Ann Surg 2006; 244: 254.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Harvey KF, Zhang X, Thomas DM . The Hippo pathway and human cancer. Nat Rev Cancer 2013; 13: 246–257.

    Article  CAS  PubMed  Google Scholar 

  4. Lamar JM, Stern P, Liu H, Schindler JW, Jiang Z-G, Hynes RO . The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci USA 2012; 109: E2441–E2450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee S-J, Anders RA et al. Genetic and pharmacological disruption of the TEAD–YAP complex suppresses the oncogenic activity of YAP. Genes Dev 2012; 26: 1300–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–337.

    Article  Google Scholar 

  7. Huang DW, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols 2008; 4: 44–57.

    Article  Google Scholar 

  8. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Erler JT, Bennewith KL, Nicolau M, Dornhöfer N, Kong C, Le Q-T et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 2006; 440: 1222–1226.

    Article  CAS  PubMed  Google Scholar 

  10. Hall CL, Bafico A, Dai J, Aaronson SA, Keller ET . Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res 2005; 65: 7554–7560.

    Article  CAS  PubMed  Google Scholar 

  11. Leung W, Ching A, Chan A, Poon T, Mian H, Wong et al. A novel interplay between oncogenic PFTK1 protein kinase and tumor suppressor TAGLN2 in the control of liver cancer cell motility. Oncogene 2011; 30: 4464–4475.

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi H, Sagara J, Kurita H, Morifuji M, Ohishi M, Kurashina K et al. Clinical significance of cellular distribution of moesin in patients with oral squamous cell carcinoma. Clin Cancer Res 2004; 10: 572–580.

    Article  CAS  PubMed  Google Scholar 

  13. Larkin SB, Farrance I, Ordahl CP . Flanking sequences modulate the cell specificity of M-CAT elements. Mol Cell Biol 1996; 16: 3742–3755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chung B-M, Rotty JD, Coulombe PA . Networking galore: intermediate filaments and cell migration. Curr Opin Cell Biol 2013; 25: 600–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P et al. Transactivation of vimentin by β-catenin in human breast cancer cells. Cancer Res 2003; 63: 2658–2664.

    CAS  PubMed  Google Scholar 

  16. Felipe De Sousa EM, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med 2013; 19: 614–618.

    Article  Google Scholar 

  17. Kahlert C, Lahes S, Radhakrishnan P, Dutta S, Mogler C, Herpel E et al. Overexpression of ZEB2 at the invasion front of colorectal cancer is an independent prognostic marker and regulates tumor invasion in vitro. Clin Cancer Res 2011; 17: 7654–7663.

    Article  CAS  PubMed  Google Scholar 

  18. Chen Z, Friedrich GA, Soriano P . Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev 1994; 8: 2293–2301.

    Article  CAS  PubMed  Google Scholar 

  19. Kaneko KJ, Kohn MJ, Liu C, DePamphilis ML . Transcription factor TEAD2 is involved in neural tube closure. Genesis 2007; 45: 577–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 2007; 134: 3827–3836.

    Article  CAS  PubMed  Google Scholar 

  21. Hucl T, Brody JR, Gallmeier E, Iacobuzio-Donahue CA, Farrance IK, Kern SE . High cancer-specific expression of mesothelin (MSLN) is attributable to an upstream enhancer containing a transcription enhancer factor–dependent MCAT motif. Cancer Res 2007; 67: 9055–9065.

    Article  CAS  PubMed  Google Scholar 

  22. Kaneko KJ, DePamphilis ML . TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development 2013; 140: 3680–3690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Home P, Saha B, Ray S, Dutta D, Gunewardena S, Yoo B et al. Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proc Natl Acad Sci 2012; 109: 7362–7367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hirate Y, Cockburn K, Rossant J, Sasaki H . Tead4 is constitutively nuclear, while nuclear vs. cytoplasmic Yap distribution is regulated in preimplantation mouse embryos. Proc Natl Acad Sci USA 2012; 109: E3389–E3390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lim B, Park J-L, Kim H-J, Park Y-K, Kim J-H, Sohn HA et al. Integrative genomics analysis reveals the multilevel dysregulation and oncogenic characteristics of TEAD4 in gastric cancer. Carcinogenesis 2014; 35: 1020–1027.

    Article  CAS  PubMed  Google Scholar 

  26. Wu S, Liu Y, Zheng Y, Dong J, Pan D . The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 2008; 14: 388–398.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao B, Ye X, Yu J, Li L, Li W, Li S et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 2008; 22: 1962–1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang H, Liu C-Y, Zha Z-Y, Zhao B, Yao J, Zhao S et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J Biol Chem 2009; 284: 13355–13362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang L, Shi S, Guo Z, Zhang X, Han S, Yang et al. Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLoS One 2013; 8: e65539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ et al. β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 2012; 151: 1457–1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiao JH, Davidson I, Matthes H, Garnier J-M, Chambon P . Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1. Cell 1991; 65: 551–568.

    Article  CAS  PubMed  Google Scholar 

  32. Pobbati AV, Chan SW, Lee I, Song H, Hong W . Structural and functional similarity between the Vgll1-TEAD and the YAP-TEAD complexes. Structure 2012; 20: 1135–1140.

    Article  CAS  PubMed  Google Scholar 

  33. Belandia B, Parker MG . Functional interaction between the p160 coactivator proteins and the transcriptional enhancer factor family of transcription factors. J Biol Chem 2000; 275: 30801–30805.

    Article  CAS  PubMed  Google Scholar 

  34. Tang W, Zhu Y, Gao J, Fu J, Liu C, Liu Y et al. MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. Br J Cancer 2014; 110: 450–458.

    Article  CAS  PubMed  Google Scholar 

  35. Zhong XY, Zhang LH, Jia SQ, Shi T, Niu ZJ, Du H et al. Positive association of up‐regulated Cripto‐1 and down‐regulated E‐cadherin with tumour progression and poor prognosis in gastric cancer. Histopathology 2008; 52: 560–568.

    Article  PubMed  Google Scholar 

  36. Jackstadt R, Röh S, Neumann J, Jung P, Hoffmann R, Horst D et al. AP4 is a mediator of epithelial–mesenchymal transition and metastasis in colorectal cancer. J Exp Med 2013; 210: 1331–1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (grant no. 81372636 and No. 81302089), the National High Technology Research and Development Program of China (863 Program) (grant no. SQ2014SFOZD00314), the Shanghai Excellent Young Teachers Program (grant no. ZZjdyx13074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-Y Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, G., Yang, Y. et al. Increased TEAD4 expression and nuclear localization in colorectal cancer promote epithelial–mesenchymal transition and metastasis in a YAP-independent manner. Oncogene 35, 2789–2800 (2016). https://doi.org/10.1038/onc.2015.342

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.342

This article is cited by

Search

Quick links