Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis

Subjects

Abstract

In mouse mammary epithelial cells, cytoplasmic polyadenylation element binding protein 1 (CPEB1) mediates the apical localization of ZO-1 mRNA, which encodes a critical tight junction component. In mice lacking CPEB1 and in cultured cells from which CPEB has been depleted, randomly distributed ZO-1 mRNA leads to the loss of cell polarity. We have investigated whether this diminution of polarity results in an epithelial-to-mesenchyme (EMT) transition and possible increased metastatic potential. Here, we show that CPEB1-depleted mammary epithelial cells alter their gene expression profile in a manner consistent with an EMT and also become motile, which are made particularly robust when cells are treated with transforming growth factor-β, an enhancer of EMT. CPEB1-depleted mammary cells become metastatic to the lung following injection into mouse fat pads while ectopically expressed CPEB1 prevents metastasis. Surprisingly, CPEB1 depletion causes some EMT/metastasis-related mRNAs to have shorter poly(A) tails while other mRNAs to have longer poly(A) tails. Matrix metalloproteinase 9 (MMP9) mRNA, which encodes a metastasis-promoting factor, undergoes poly(A) lengthening and enhanced translation upon CPEB reduction. Moreover, in human breast cancer cells that become progressively more metastatic, CPEB1 is reduced while MMP9 becomes more abundant. These data suggest that at least in part, CPEB1 regulation of MMP9 mRNA expression mediates metastasis of breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Groisman I, Jung MY, Sarkissian M, Cao Q, Richter JD . Translational control of the embryonic cell cycle. Cell 2002; 109: 473–483.

    Article  CAS  PubMed  Google Scholar 

  2. Burns DM, D'Ambrogio A, Nottrott S, Richter JD . CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature 2011; 473: 105–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. D'Ambrogio A, Nagaoka K, Richter JD . Translational control of cell growth and malignancy by the CPEB1s. Nat Rev Cancer 2013; 13: 283–290.

    Article  CAS  PubMed  Google Scholar 

  4. Ivshina M, Lasko P, Richter JD . Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu Rev Cell Dev Biol 2014; 30: 393–415.

    Article  CAS  PubMed  Google Scholar 

  5. Tay J, Richter JD . Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB1 knockout mice. Dev Cell 2001; 1: 201–213.

    Article  CAS  PubMed  Google Scholar 

  6. Alarcon JM, Hodgman R, Theis M, Huang YS, Kandel ER, Richter JD . Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn Mem 2004; 11: 318–327.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Berger-Sweeney J, Zearfoss NR, Richter JD . Reduced extinction of hippocampal-dependent memories in CPEB1 knockout mice. Learn Mem 2006; 13: 4–7.

    Article  PubMed  Google Scholar 

  8. Groisman I, Ivshina M, Marin V, Kennedy NJ, Davis RJ, Richter JD . Control of cellular senescence by CPEB1. Genes Dev 2006; 20: 2701–2712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burns DM, Richter JD . CPEB1 regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev 2008; 22: 3449–3460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alexandrov IM, Ivshina M, Jung DY, Friedline R, Ko HJ, Xu M et al. Cytoplasmic polyadenylation element binding protein deficiency stimulates PTEN and Stat3 mRNA translation and induces hepatic insulin resistance. PLoS Genet 2012; 8: e1002457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Udagawa T, Farny NG, Jakovcevski M, Kaphzan H, Alarcon JM, Anilkumar S et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat Med 2013; 19: 1473–1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Groisman I, Huang YS, Mendez R, Cao Q, Theurkauf W, Richter JD . CPEB1, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 2000; 103: 435–447.

    Article  CAS  PubMed  Google Scholar 

  13. Barnard DC, Ryan K, Manley JL, Richter JD . Symplekin and xGLD-2 are required for CPEB1-mediated cytoplasmic polyadenylation. Cell 2004; 119: 641–651.

    Article  CAS  PubMed  Google Scholar 

  14. Eliscovich C, Peset I, Vernos I, Méndez R . Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat Cell Biol 2008; 10: 858–865.

    Article  CAS  PubMed  Google Scholar 

  15. Huang YS, Jung MY, Sarkissian M, Richter JD . N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB1 phosphorylation and alpha CaMKII mRNA polyadenylation at synapses. EMBO J 2002; 21: 2139–2148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang YS, Carson JH, Barbarese E, Richter JD . Facilitation of dendritic mRNA transport by CPEB1. Genes Dev 2003; 17: 638–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bestman JE, Cline HT . The RNA binding protein CPEB1 regulates dendrite morphogenesis and neuronal circuit assembly in vivo. Proc Natl Acad Sci USA 2008; 105: 20494–20499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Udagawa T, Swanger SA, Takeuchi K, Kim JH, Nalavadi V, Shin J et al. Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol Cell 2012; 47: 253–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen W, Liu HH, Schiapparelli L, McClatchy D, He HY, Yates JR 3rd et al. Acute synthesis of CPEB is required for plasticity of visual avoidance behavior in Xenopus. Cell Rep 2014; 6: 737–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nagaoka K, Udagawa T, Richter JD . CPEB1-mediated ZO-1 mRNA localization is required for epithelial tight-junction assembly and cell polarity. Nat Commun 2012; 3: 675.

    Article  PubMed  Google Scholar 

  21. Mailleux AA, Overholtzer M, Brugge JS . Lumen formation during mammary epithelial morphogenesis: insights from in vitro and in vivo models. Cell Cycle 2008; 7: 57–62.

    Article  CAS  PubMed  Google Scholar 

  22. Knights AJ, Funnell AP, Crossley M, Pearson RC . Holding tight: cell junctions and cancer spread. Trends Cancer Res 2012; 8: 61–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Scheel C, Weinberg RA . Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 2012; 22: 396–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Voulgari A, Pintzas A . Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta 2009; 1796: 75–90.

    CAS  PubMed  Google Scholar 

  25. Chaffer CL, Weinberg RA . A perspective on cancer cell metastasis. Science 2011; 331: 1559–1564.

    Article  CAS  PubMed  Google Scholar 

  26. Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci USA 2001; 98: 6686–6691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin CL, Evans V, Shen S, Xing Y, Richter JD . The nuclear experience of CPEB: implications for RNA processing and translational control. RNA 2010; 16: 338–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du L, Richter JD . Activity-dependent polyadenylation in neurons. RNA 2005; 11: 1340–1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Racki WJ, Richter JD . CPEB controls oocyte growth and follicle development in the moue. Development 2006; 133: 4527–4537.

    Article  CAS  PubMed  Google Scholar 

  30. Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2002; 2: 289–300.

    Article  CAS  PubMed  Google Scholar 

  31. Groppo R, Richter JD . CPEB control of NF-kappaB nuclear localization and interleukin-6 production mediates cellular senescence. Mol Cell Biol 2011; 31: 2707–2714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. D'Ambrogio A, Gu W, Udagawa T, Mello CC, Richter JD . Specific miRNA stabilization by Gld2-catalyzed monoadenylation. Cell Rep 2012; 2: 1537–1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nairismägi ML, Vislovukh A, Meng Q, Kratassiouk G, Beldiman C, Petretich M et al. Translational control of TWIST1 expression in MCF-10 A cell lines recapitulating breast cancer progression. Oncogene 2012; 31: 4960–4966.

    Article  PubMed  Google Scholar 

  34. Grudzien-Nogalska E, Reed BC, Rhoads RE . CPEB1 promotes differentiation and suppresses EMT in mammary epithelial cells. J Cell Sci 2014; 127: 2326–2338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gonzalez DM, Medici D . Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 2014; 7: re8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Tian XJ, Zhang H, Teng Y, Li R, Bai F et al. TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci Signal 2014; 7: ra91.

    Article  PubMed  Google Scholar 

  37. Kim JH, Richter JD . Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell 2006; 24: 173–183.

    Article  CAS  PubMed  Google Scholar 

  38. Janusz A, Milek J, Perycz M, Pacini L, Bagni C, Kaczmarek L et al. The Fragile X mental retardation protein regulates matrix metalloproteinase 9 mRNA at synapses. J Neurosci 2013; 33: 18234–18241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 2008; 456: 464–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kochanek DM, Wells DG . CPEB1 regulates the expression of MTDH/AEG-1 and glioblastoma cell migration. Mol Cancer Res 2013; 11: 149–160.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant GM46779 (to JDR).

Author contributions

KN and JDR designed the research; KN, HZ, KF and GW performed research; MI made antibody; KN and JDR analyzed data; and KN and JDR wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K Nagaoka or J D Richter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaoka, K., Fujii, K., Zhang, H. et al. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene 35, 2893–2901 (2016). https://doi.org/10.1038/onc.2015.350

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.350

This article is cited by

Search

Quick links