Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of breast cancer invasion by TIS21/BTG2/Pc3-Akt1-Sp1-Nox4 pathway targeting actin nucleators, mDia genes

Subjects

Abstract

The mammalian homolog of Drosophila diaphanous (mDia), actin nucleator, has been known to participate in the process of invasion and metastasis of cancer cells via regulating a number of actin-related biological processes. We have previously reported that tumor suppressor TIS21/BTG2/Pc3 (TIS21) inhibits invadopodia formation by downregulating reactive oxygen species (ROS) in MDA-MB-231 cells. We herein report that TIS21/BTG2/Pc3 downregulates diaphanous-related formin (DRF) expression via reducing NADPH oxidase 4 (Nox4)-derived ROS generation by Akt1 activation and subsequently impairs invasion activity of the highly invasive breast cancer cells. Knockdown of Akt1 by RNA interference recovered the TIS21/BTG2/Pc3-inhibited F-actin remodeling and ROS generation by recovering Nox4 expression. Furthermore, Sp1-mediated Nox4 transcription was downregulated by TIS21/BTG2/Pc3-Akt1 signals, leading to the inhibition of cancer cell invasion via F-actin remodeling by mDia genes. To our best knowledge, this is the first study to show that TIS21/BTG2/Pc3-Akt1 inhibited Sp1-Nox4-ROS cascade, subsequently reducing invasion activity via inhibition of mDia family genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Danielle AM, Courtneidge SA . The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 2011; 12: 413–426.

    Article  Google Scholar 

  2. Pollard TD, Borisy GG . Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003; 112: 453–465.

    Article  CAS  PubMed  Google Scholar 

  3. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G et al. Cell migration: integrating signals from front to back. Science 2003; 302: 1704–1709.

    Article  CAS  PubMed  Google Scholar 

  4. Mouneimne G, Hansen SD, Selfors LM, Petrak L, Hickey MM, Gallegos LL et al. Differential remodeling of actin cytoskeleton architecture by profilin isoforms leads to distinct effects on cell migration and invasion. Cancer Cell 2012; 22: 615–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schirenbeck A, Bretschneider T, Arasada R, Schleicher M, Faix J . The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nat Cell Biol 2005; 7: 619–625.

    Article  CAS  PubMed  Google Scholar 

  6. Lizárraga F, Poincloux R, Romao M, Montagnac G, Le Dez G, Bonne I et al. Diaphanous-related formins are required for invadopodia formation and invasion of breast tumor cells. Cancer Res 2009; 69: 2792–2800.

    Article  PubMed  Google Scholar 

  7. Kitzing TM, Sahadevan AS, Brandt DT, Knieling H, Hannemann S, Fackler OT et al. Positive feedback between Dia1, LARG, and RhoA regulates cell morphology and invasion. Genes Dev 2007; 21: 1478–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sarmiento C, Wang W, Dovas A, Yamaguchi H, Sidani M, El-Sibai M et al. WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells. J Cell Biol 2008; 180: 1245–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wallar BJ, Alberts AS . The formins: active scaffolds that remodel the cytoskeleton. Trends Cell Biol 2003; 13: 435–446.

    Article  CAS  PubMed  Google Scholar 

  10. Xing H, Wang S, Weng D, Chen G, Yang X, Zhou J et al. Knock-down of P-glycoprotein reverses taxol resistance in ovarian cancer multicellular spheroids. Oncol Rep 2007; 17: 117–122.

    CAS  PubMed  Google Scholar 

  11. Carramusa L, Ballestrem C, Zilberman Y, Bershadsky AD . Mammalian diaphanous-related formin Dia1 controls the organization of E-cadherin-mediated cell-cell junctions. J Cell Sci 2007; 120: 3870–3882.

    Article  CAS  PubMed  Google Scholar 

  12. Chin YR, Toker A . Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cell Signal 2009; 21: 470–476.

    Article  CAS  PubMed  Google Scholar 

  13. Grabinski N, Bartkowiak K, Grupp K, Brandt B, Pantel K, Jücker M . Distinct functional roles of Akt isoforms for proliferation, survival, migration and EGF-mediated signalling in lung cancer derived disseminated tumor cells. Cell Signal 2011; 23: 1952–1960.

    Article  CAS  PubMed  Google Scholar 

  14. Hutchinson JN, Jin J, Cardiff RD, Woodgett JR, Muller WJ . Activation of Akt-1 (PKB-alpha) can accelerate ErbB-2-mediated mammary tumorigenesis but suppresses tumor invasion. Cancer Res 2004; 64: 3171–3178.

    Article  CAS  PubMed  Google Scholar 

  15. Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N et al. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol 2005; 171: 1023–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu H, Radisky DC, Nelson CM, Zhang H, Fata JE, Roth RA et al. Mechanism of Akt1 inhibition of breast cancer cell invasion reveals a protumorigenic role for TSC2. Proc Natl Acad Sci USA 2006; 103: 4134–4139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arboleda MJ, Lyons JF, Kabbinavar FF, Bray MR, Snow BE, Ayala R et al. Overexpression of Akt2/protein kinase Bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res 2003; 63: 196–206.

    CAS  PubMed  Google Scholar 

  18. Yoeli-Lerner M, Yiu GK, Rabinovitz I, Erhardt P, Jauliac S, Toker A . Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell 2005; 20: 539–550.

    Article  CAS  PubMed  Google Scholar 

  19. Rouault JP, Falette N, Guéhenneux F, Guillot C, Rimokh R, Wang Q et al. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet 1996; 14: 482–486.

    Article  CAS  PubMed  Google Scholar 

  20. Fletcher BS, Lim RW, Varnum BC, Kujubu DA, Koski RA, Herschman HR . Structure and expression of TIS21, a primary response gene induced by growth factors and tumor promoters. J Biol Chem 1991; 266: 14511–14518.

    CAS  PubMed  Google Scholar 

  21. Bradbury A, Possenti R, Shooter EM, Tirone F . Molecular cloning of PC3, a putatively secreted protein whose mRNA is induced by nerve growth factor and depolarization. Proc Natl Acad Sci USA 1991; 88: 3353–3357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, Gudkov AV . A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev 2006; 20: 236–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kawakubo H, Carey JL, Brachtel E, Gupta V, Green JE, Walden PD et al. Expression of the NF-kappaB-responsive gene BTG2 is aberrantly regulated in breast cancer. Oncogene 2004; 23: 8310–8319.

    Article  CAS  PubMed  Google Scholar 

  24. Buganim Y, Solomon H, Rais Y, Kistner D, Nachmany I, Brait M et al. p53 Regulates the Ras circuit to inhibit the expression of a cancer-related gene signature by various molecular pathways. Cancer Res 2010; 70: 2274–2284.

    Article  CAS  PubMed  Google Scholar 

  25. Solomon H, Buganim Y, Pomeraniec L, Beatus T, Assia Y, Kogan-Sakin I et al. Various p53 mutant types differently regulate the Ras circuit to induce a cancer-related gene signature. J Cell Sci 2012; 125: 3144–31452.

    Article  CAS  PubMed  Google Scholar 

  26. Guardavaccaro D, Corrente G, Covone F, Micheli L, D'Agnano I, Starace G et al. Arrest of G(1)-S progression by the p53-inducible gene PC3 is Rb dependent and relies on the inhibition of cyclin D1 transcription. Mol Cell Biol 2000; 20: 1797–1815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim IK, Lee MS, Ryu MS, Park TJ, Fujiki H, Eguchi H et al. Induction of growth inhibition of 293 cells by downregulation of the cyclin E and cyclin-dependent kinase 4 proteins due to overexpression of TIS21. Mol Carcinog 1998; 23: 25–35.

    Article  CAS  PubMed  Google Scholar 

  28. Hong JW, Ryu MS, Lim IK . Phosphorylation of serine 147 of tis21/BTG2/pc3 by p-Erk1/2 induces Pin-1 binding in cytoplasm and cell death. J Biol Chem 2005; 280: 21256–21263.

    Article  CAS  PubMed  Google Scholar 

  29. Kawakubo H, Brachtel E, Hayashida T, Yeo G, Kish J, Muzikansky A et al. Loss of B-cell translocation gene-2 in estrogen receptor-positive breast carcinoma is associated with tumor grade and overexpression of cyclin d1 protein. Cancer Res 2006; 66: 7075–7082.

    Article  CAS  PubMed  Google Scholar 

  30. Choi JA, Lim IK . TIS21/BTG2 inhibits invadopodia formation by downregulating reactive oxygen species level in MDA-MB-231 cells. J Cancer Res Clin Oncol 2013; 139: 1657–1665.

    Article  CAS  PubMed  Google Scholar 

  31. Park TJ, Kim YJ, Oh SP, Kang SY, Kim BW, Wang HJ et al. TIS21 negatively regulates hepatocarcinogenesis by disruption of cyclin B1-Forkhead box M1 regulation loop. Hepatology 2008; 47: 1533–1543.

    Article  CAS  PubMed  Google Scholar 

  32. Kim BC, Ryu MS, Oh SP, Lim IK . TIS21/(BTG2) negatively regulates estradiol-stimulated expansion of hematopoietic stem cells by derepressing Akt phosphorylation and inhibiting mTOR signal transduction. Stem Cells 2008; 26: 2339–2348.

    Article  CAS  PubMed  Google Scholar 

  33. Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H et al. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol 1998; 140: 1383–1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang W, Eddy R, Condeelis J . The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer 2007; 7: 429–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sundaramoorthy S, Ryu MS, Lim IK . B-cell translocation gene 2 mediates crosstalk between PI3K/Akt1 and NFκB pathways which enhances transcription of MnSOD by accelerating IκBα degradation in normal and cancer cells. Cell Commun Signal 2013; 11: 69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lassègue B, San Martín A, Griendling KK . Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 2012; 110: 1364–1390.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, Kakizuka A et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 1997; 16: 3044–3056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shimada A, Nyitrai M, Vetter IR, Kühlmann D, Bugyi B, Narumiya S et al. The core FH2 domain of diaphanous-related formins is an elongated actin binding protein that inhibits polymerization. Mol Cell 2004; 13: 511–522.

    Article  CAS  PubMed  Google Scholar 

  39. Devanand P, Kim SI, Choi YW, Sheen SS, Yim H, Ryu MS et al. Inhibition of bladder cancer invasion by Sp1-mediated BTG2 expression via inhibition of DNA methyltransferase 1. FEBS J 2014; 281: 5581–5601.

    Article  CAS  PubMed  Google Scholar 

  40. Fruman DA, Rommel C . PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 2014; 2: 140–156.

    Article  Google Scholar 

  41. Gao T, Furnari F, Newton AC . PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 2005; 18: 13–24.

    Article  CAS  PubMed  Google Scholar 

  42. Brognard J, Sierecki E, Gao T, Newton AC . PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 2007; 25: 917–931.

    Article  CAS  PubMed  Google Scholar 

  43. Matheny Jr RW, Adamo ML . PI3K p110 alpha and p110 beta have differential effects on Akt activation and protection against oxidative stress-induced apoptosis in myoblasts. Cell Death Differ 2010; 17: 677–688.

    Article  CAS  PubMed  Google Scholar 

  44. Choi JA, Lee JW, Kim H, Kim EY, Seo JM, Ko J et al. Pro-survival of estrogen receptor-negative breast cancer cells is regulated by a BLT2-reactive oxygen species-linked signaling pathway. Carcinogenesis 2010; 4: 543–551.

    Article  Google Scholar 

  45. Kim EY, Seo JM, Kim C, Lee JE, Lee KM, Kim JH . BLT2 promotes the invasion and metastasis of aggressive bladder cancer cells through a reactive oxygen species-linked pathway. Free Radic Biol Med 2010; 49: 1072–1081.

    Article  CAS  PubMed  Google Scholar 

  46. Boudreau HE, Casterline BW, Rada B, Korzeniowska A, Leto TL . Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells. Free Radic Biol Med 2012; 53: 1489–1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bondi CD, Manickam N, Lee DY, Block K, Gorin Y, Abboud HE et al. NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts. J Am Soc Nephrol 2010; 21: 93–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang L, Sheppard OR, Shah AM, Brewer AC . Positive regulation of the NADPH oxidase NOX4 promoter in vascular smooth muscle cells by E2F. Free Radic Biol Med 2008; 45: 679–685.

    Article  CAS  PubMed  Google Scholar 

  49. Katsuyama M, Hirai H, Iwata K, Ibi M, Matsuno K, Matsumoto M et al. Sp3 transcription factor is crucial for transcriptional activation of the human NOX4 gene. FEBS J 2011; 278: 964–972.

    Article  CAS  PubMed  Google Scholar 

  50. Diebold I, Petry A, Hess J, Görlach A . The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1. Mol Biol Cell 2010; 21: 2087–2096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Estève PO, Chang Y, Samaranayake M, Upadhyay AK, Horton JR, Feehery GR et al. Methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nat Struct Mol Biol 2011; 18: 42–48.

    Article  PubMed  Google Scholar 

  52. Lim SK, Choi YW, Lim IK, Park TJ . BTG2 suppresses cancer cell migration through inhibition of Src-FAK signaling by downregulation of reactive oxygen species generation in mitochondria. Clin Exp Metastasis 2012; 29: 901–913.

    Article  CAS  PubMed  Google Scholar 

  53. Melamed J, Kernizan S, Walden PD . Expression of B-cell translocation gene 2 protein in normal human tissues. Tissue Cell 2002; 34: 28–32.

    Article  CAS  PubMed  Google Scholar 

  54. Lim IK, Lee MS, Lee SH, Kim NK, Jou I, Seo JS et al. Differential expression of TIS21 and TIS1 genes in the various organs of Balb/c mice in the various organs of Balb/c mice, thymic carcinoma tissues and human cancer cell lines. J Cancer Res Clin Oncol 1995; 121: 279–284.

    Article  CAS  PubMed  Google Scholar 

  55. Ficazzola MA, Fraiman M, Gitlin J, Woo K, Melamed J, Rubin MA et al. Antiproliferative B cell translocation gene 2 protein is down-regulated post-transcriptionally as an early event in prostate carcinogenesis. Carcinogenesis 2001; 22: 1271–1279.

    Article  CAS  PubMed  Google Scholar 

  56. Struckmann K, Schraml P, Simon R, Elmenhorst K, Mirlacher M, Kononen J et al. Impaired expression of the cell cycle regulator BTG2 is common in clear cell renal cell carcinoma. Cancer Res 2004; 64: 1632–1638.

    Article  CAS  PubMed  Google Scholar 

  57. Farioli-Vecchioli S, Tanori M, Micheli L, Mancuso M, Leonardi L, Saran A et al. Inhibition of medulloblastoma tumorigenesis by the antiproliferative and pro-ifferentiative gene PC3. FASEB J 2007; 21: 2215–2225.

    Article  CAS  PubMed  Google Scholar 

  58. Liu M, Wu H, Liu T, Li Y, Wang F, Wan H et al. Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma. Cell Res 2009; 19: 828–837.

    Article  CAS  PubMed  Google Scholar 

  59. Takahashi F, Chiba N, Tajima K, Hayashida T, Shimada T, Takahashi M et al. Breast tumor progression induced by loss of BTG2 expression is inhibited by targeted therapy with the ErbB/HER inhibitor lapatinib. Oncogene 2011; 30: 3084–3095.

    Article  CAS  PubMed  Google Scholar 

  60. Schmidt M, Böhm D, von Törne C, Steiner E, Puhl A, Pilch H et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 2008; 68: 5405–5413.

    Article  CAS  PubMed  Google Scholar 

  61. Coppola V, Musumeci M, Patrizii M, Cannistraci A, Addario A, Maugeri-Saccà M et al. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition. Oncogene 2013; 32: 1843–1853.

    Article  CAS  PubMed  Google Scholar 

  62. Yamaguchi H, Yoshida S, Muroi E, Yoshida N, Kawamura M, Kouchi Z et al. Phosphoinositide 3-kinase signaling pathway mediated by p110α regulates invadopodia formation. J Cell Biol 2011; 193: 1275–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dillon RL, Muller WJ . Distinct biological roles for the akt family in mammary tumor progression. Cancer Res 2010; 70: 4260–4264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iliopoulos D, Polytarchou C, Hatziapostolou M, Kottakis F, Maroulakou IG, Struhl K et al. MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci Signal 2009; 2: ra62.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Maroulakou IG, Oemler W, Naber SP, Tsichlis PN . Akt1 ablation inhibits, whereas Akt2 ablation accelerates, the development of mammary adenocarcinomas in mouse mammary tumor virus (MMTV)-ErbB2/neu and MMTV-polyoma middle T transgenic mice. Cancer Res 2007; 67: 167–177.

    Article  CAS  PubMed  Google Scholar 

  66. Saji M, Narahara K, McCarty SK, Vasko VV, La Perle KM, Porter K et al. Akt1 deficiency delays tumor progression, vascular invasion, and distant metastasis in a murine model of thyroid cancer. Oncogene 2011; 30: 4307–4315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Turner DP, Moussa O, Sauane M, Fisher PB, Watson DK . Prostate-derived ETS factor is a mediator of metastatic potential through the inhibition of migration and invasion in breast cancer. Cancer Res 2007; 67: 1618–1625.

    Article  CAS  PubMed  Google Scholar 

  68. Colvin RA, Means TK, Diefenbach TJ, Moita LF, Friday RP, Sever S et al. Synaptotagmin-mediated vesicle fusion regulates cell migration. Nat Immunol 2010; 11: 495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Park S, Lee YJ, Lee HJ, Seki T, Hong KH, Park J et al. B-cell translocation gene 2 (Btg2) regulates vertebral patterning by modulating bone morphogenetic protein/smad signaling. Mol Cell Biol 2004; 24: 10256–10262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Imran M, Lim IK . Regulation of Btg2(/TIS21/PC3) expression via reactive oxygen species-protein kinase C-NFκB pathway under stress conditions. Cell Signal 2013; 25: 2400–2412.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors greatly appreciate Professor Young-Joon Chwae for his kind help in lucigenin-enhanced chemiluminescence assay, excellent advice for statistical analysis by Professor Seung-Soo Sheen, technical help for two-photon fluorescence microscopy by Cheol Ho Heo and careful reading of this manuscript by Professor Woon Ki Paik at Ajou University School of Medicine. This work was supported by a grant of the Korea Health technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A121725) and a grant from the National R&D Program for Cancer Control, Ministry for Health and Welfare, Republic of Korea (131280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I K Lim.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JA., Jung, Y., Kim, J. et al. Inhibition of breast cancer invasion by TIS21/BTG2/Pc3-Akt1-Sp1-Nox4 pathway targeting actin nucleators, mDia genes. Oncogene 35, 83–93 (2016). https://doi.org/10.1038/onc.2015.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.64

This article is cited by

Search

Quick links