Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

miR-186 regulation of Twist1 and ovarian cancer sensitivity to cisplatin

Subjects

Abstract

Epithelial–mesenchymal transition (EMT) has an established role in promoting tumor progression and the acquisition of therapeutic resistance. Here, the EMT phenotype was detected in cisplatin-resistant ovarian cancer tissues and cell lines, and correlated with decreased miR-186 expression, increased Twist1 expression, chemoresistance and poor prognosis in epithelial ovarian cancer (EOC) patients. Introducing miR-186 into EOC cells led to a reduction in twist family bHLH transcription factor 1 (Twist1) expression along with morphological, functional and molecular changes consistent with mesenchymal-to-epithelial transition, G1 cell-cycle arrest and enhanced cell apoptosis, which consequently rendered the cells more sensitive to cisplatin in vitro and in vivo. Furthermore, luciferase reporter and rescue assay results showed that the EMT and drug resistance reversal in response to miR-186 was mediated by Twist1. Collectively, these findings implicate miR-186 as an attractive candidate for overcoming chemoresistance in ovarian cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Konecny GE, Wang C, Hamidi H, Winterhoff B, Kalli KR, Dering J et al. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. J Natl Cancer Inst 2014; 106: pii: dju249.

    Article  Google Scholar 

  2. Agarwal R, Kaye SB . Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 2003; 3: 502–516.

    Article  CAS  Google Scholar 

  3. Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY et al. Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med 2014; 6: 1279–1293.

    Article  CAS  Google Scholar 

  4. Gardi NL, Deshpande TU, Kamble SC, Budhe SR, Bapat SA . Discrete molecular classes of ovarian cancer suggestive of unique mechanisms of transformation and metastases. Clin Cancer Res 2014; 20: 87–99.

    Article  CAS  Google Scholar 

  5. Puisieux A, Brabletz T, Caramel J . Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 2014; 16: 488–494.

    Article  CAS  Google Scholar 

  6. Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res 2013; 19: 279–290.

    Article  CAS  Google Scholar 

  7. Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Abbruzzese JL et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res 2009; 69: 5820–5828.

    Article  CAS  Google Scholar 

  8. Miow QH, Tan TZ, Ye J, Lau JA, Yokomizo T, Thiery JP et al. Epithelial–mesenchymal status renders differential responses to cisplatin in ovarian cancer. Oncogene 2014; e-pub ahead of print 26 May 2014; doi:10.1038/onc.2014.136.

    Article  Google Scholar 

  9. Wang Z, Li Y, Kong D, Banerjee S, Ahmad A, Azmi AS et al. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res 2009; 69: 2400–2407.

    Article  CAS  Google Scholar 

  10. Yang AD, Fan F, Camp ER, van Buren G, Liu W, Somcio R et al. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res 2006; 12: 4147–4153.

    Article  CAS  Google Scholar 

  11. Hiscox S, Jiang WG, Obermeier K, Taylor K, Morgan L, Burmi R et al. Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. Int J Cancer 2006; 118: 290–301.

    Article  CAS  Google Scholar 

  12. Jia L, Zhang S, Ye Y, Li X, Mercado-Uribe I, Bast RC Jr et al. Paclitaxel inhibits ovarian tumor growth by inducing epithelial cancer cells to benign fibroblast-like cells. Cancer Lett 2012; 326: 176–182.

    Article  CAS  Google Scholar 

  13. Yang D, Sun Y, Hu L, Zheng H, Ji P, Pecot CV et al. Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer cell 2013; 23: 186–199.

    Article  CAS  Google Scholar 

  14. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    Article  CAS  Google Scholar 

  15. Chen J, Wang L, Matyunina LV, Hill CG, McDonald JF . Overexpression of miR-429 induces mesenchymal-to-epithelial transition (MET) in metastatic ovarian cancer cells. Gynecol Oncol 2011; 121: 200–205.

    Article  CAS  Google Scholar 

  16. Parikh A, Lee C, Peronne J, Marchini S, Baccarini A, Kolev V et al. microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial-mesenchymal transition. Nat Commun 2014; 5: 2977.

    Article  Google Scholar 

  17. Nuti SV, Mor G, Li P, Yin G . TWIST and ovarian cancer stem cells: implications for chemoresistance and metastasis. Oncotarget 2014; 5: 7260–7271.

    Article  Google Scholar 

  18. Qin Q, Xu Y, He T, Qin C, Xu J . Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res 2012; 22: 90–106.

    Article  CAS  Google Scholar 

  19. Li QQ, Xu JD, Wang WJ, Cao XX, Chen Q, Tang F et al. Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clin Cancer Res 2009; 15: 2657–2665.

    Article  CAS  Google Scholar 

  20. Hosono S, Kajiyama H, Terauchi M, Shibata K, Ino K, Nawa A et al. Expression of Twist increases the risk for recurrence and for poor survival in epithelial ovarian carcinoma patients. Br J Cancer 2007; 96: 314–320.

    Article  CAS  Google Scholar 

  21. Li J, Wood WH 3rd, Becker KG, Weeraratna AT, Morin PJ . Gene expression response to cisplatin treatment in drug-sensitive and drug-resistant ovarian cancer cells. Oncogene 2007; 26: 2860–2872.

    Article  CAS  Google Scholar 

  22. Kwok WK, Ling MT, Lee TW, Lau TC, Zhou C, Zhang X et al. Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res 2005; 65: 5153–5162.

    Article  CAS  Google Scholar 

  23. Maestro R, Dei Tos AP, Hamamori Y, Krasnokutsky S, Sartorelli V, Kedes L et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev 1999; 13: 2207–2217.

    Article  CAS  Google Scholar 

  24. Cao L, Shao M, Schilder J, Guise T, Mohammad KS, Matei D . Tissue transglutaminase links TGF-beta, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer. Oncogene 2012; 31: 2521–2534.

    Article  CAS  Google Scholar 

  25. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 2010; 12: 982–992.

    Article  Google Scholar 

  26. Sun C, Li N, Yang Z, Zhou B, He Y, Weng D et al. miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J Natl Cancer Inst 2013; 105: 1750–1758.

    Article  CAS  Google Scholar 

  27. Baribeau S, Chaudhry P, Parent S, Asselin E . Resveratrol inhibits cisplatin-induced epithelial-to-mesenchymal transition in ovarian cancer cell lines. PLoS One 2014; 9: e86987.

    Article  Google Scholar 

  28. Tiwari N, Gheldof A, Tatari M, Christofori G . EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol 2012; 22: 194–207.

    Article  CAS  Google Scholar 

  29. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Article  Google Scholar 

  30. Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J et al. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet 2014; 10: e1004177.

    Article  Google Scholar 

  31. Erdmann K, Kaulke K, Thomae C, Huebner D, Sergon M, Froehner M et al. Elevated expression of prostate cancer-associated genes is linked to down-regulation of microRNAs. BMC Cancer 2014; 14: 82.

    Article  Google Scholar 

  32. Cai J, Wu J, Zhang H, Fang L, Huang Y, Yang Y et al. miR-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation. Cancer Res 2013; 73: 756–766.

    Article  CAS  Google Scholar 

  33. Ries J, Vairaktaris E, Agaimy A, Kintopp R, Baran C, Neukam FW et al. miR-186, miR-3651 and miR-494: potential biomarkers for oral squamous cell carcinoma extracted from whole blood. Oncol Rep 2014; 31: 1429–1436.

    Article  CAS  Google Scholar 

  34. Goeppert B, Schmezer P, Dutruel C, Oakes C, Renner M, Breinig M et al. Down-regulation of tumor suppressor A kinase anchor protein 12 in human hepatocarcinogenesis by epigenetic mechanisms. Hepatology 2010; 52: 2023–2033.

    Article  CAS  Google Scholar 

  35. Myatt SS, Wang J, Monteiro LJ, Christian M, Ho KK, Fusi L et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 2010; 70: 367–377.

    Article  CAS  Google Scholar 

  36. Farrand L, Byun S, Kim JY, Im-Aram A, Lee J, Lim S et al. Piceatannol enhances cisplatin sensitivity in ovarian cancer via modulation of p53, X-linked inhibitor of apoptosis protein (XIAP), and mitochondrial fission. J Biol Chem 2013; 288: 23740–23750.

    Article  CAS  Google Scholar 

  37. Zhu X, Li Y, Xie C, Yin X, Liu Y, Cao Y et al. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. Int J Cancer 2014; 135: 1286–1296.

    Article  CAS  Google Scholar 

  38. Zhu X, Li Y, Shen H, Li H, Long L, Hui L et al. miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6. FEBS Lett 2013; 587: 73–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (81402165/81301194), the Natural Science Foundation of Jiangsu Province (BK20131241), the Clinical Special Projects of Science and Technology Department of Jiangsu Province (BL2012059), the Research Projects of Jiangsu Provincial Health Department (H201451), the Maternal and Child Health Research Projects of Jiangsu Province (F201437/F201350/F201215) and the Social Development of Zhenjiang (SH2012057/SH2013025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W Xu or Y Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Shen, H., Yin, X. et al. miR-186 regulation of Twist1 and ovarian cancer sensitivity to cisplatin. Oncogene 35, 323–332 (2016). https://doi.org/10.1038/onc.2015.84

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.84

This article is cited by

Search

Quick links