Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

miR-155 downregulates ErbB2 and suppresses ErbB2-induced malignant transformation of breast epithelial cells

Subjects

Abstract

ErbB2 is a vital breast cancer gene and its overexpression has a decisive role in breast tumor initiation and malignant progression. However, the molecular mechanisms that underlie ErbB2 dysregulation in breast cancer cells remain incompletely understood. In this study, we found that ErbB2 expression is inversely correlated with the level of miR-155, a well-documented oncogenic miRNA, in ErbB2-positive breast tumors. We further determined that miR-155 potently suppresses ErbB2 in breast cancer cells. Mechanistically, miR-155 acts to downregulate ErbB2 via two distinct mechanisms. First, miR-155 represses ErbB2 transcription by targeting HDAC2, a transcriptional activator of ErbB2. Second, miR-155 directly targets ErbB2 via a regulatory element in its coding region. Intriguingly, miR-155 is upregulated by trastuzumab and in turn leads to a reduction of ErbB2 expression in trastuzumab-treated ErbB2-positive breast cancer cells. Functional studies showed that miR-155 inhibits ErbB2-induced malignant transformation of human breast epithelial cells. Thus, our findings reveal an intriguing miR-155-ErbB2 context in regulating the malignant transformation of breast epithelial cells, and thereby indicate a novel mode of action for miR-155 in ErbB2-positive breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. Cancer J Clin 2011; 61: 69–90.

    Article  Google Scholar 

  2. Siegel R, Ma J, Zou Z, Jemal A . Cancer statistics, 2014. Cancer J Clin 2014; 64: 9–29.

    Article  Google Scholar 

  3. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    Article  CAS  PubMed  Google Scholar 

  4. Yu D, Hung MC . Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene 2000; 19: 6115–6121.

    Article  CAS  PubMed  Google Scholar 

  5. Eccles SA . The role of c-erbB-2/HER2/neu in breast cancer progression and metastasis. J Mamm Gland Biol Neoplasia 2001; 6: 393–406.

    Article  CAS  Google Scholar 

  6. Yarden Y . Biology of HER2 and its importance in breast cancer. Oncology 2001; 61 (Suppl 2): 1–13.

    Article  CAS  PubMed  Google Scholar 

  7. Nofech-Mozes S, Spayne J, Rakovitch E, Hanna W . Prognostic and predictive molecular markers in DCIS: a review. Adv Anat Pathol 2005; 12: 256–264.

    Article  CAS  PubMed  Google Scholar 

  8. Krauss WC, Park JW, Kirpotin DB, Hong K, Benz CC . Emerging antibody-based HER2 (ErbB-2/neu) therapeutics. Breast Dis 2000; 11: 113–124.

    Article  CAS  PubMed  Google Scholar 

  9. Hudis CA . Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med 2007; 357: 39–51.

    Article  CAS  PubMed  Google Scholar 

  10. Hicks DG, Kulkarni S . Trastuzumab as adjuvant therapy for early breast cancer: the importance of accurate human epidermal growth factor receptor 2 testing. Arch Pathol Lab Med 2008; 132: 1008–1015.

    CAS  PubMed  Google Scholar 

  11. Pinto AC, Ades F, de Azambuja E, Piccart-Gebhart M . Trastuzumab for patients with HER2 positive breast cancer: delivery, duration and combination therapies. Breast (Edinburgh, Scotland) 2013; 22 (Suppl 2): S152–S155.

    Article  Google Scholar 

  12. Wu L, Belasco JG . Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell 2008; 29: 1–7.

    Article  PubMed  Google Scholar 

  13. Guarnieri DJ, DiLeone RJ . MicroRNAs: a new class of gene regulators. Ann Med 2008; 40: 197–208.

    Article  CAS  PubMed  Google Scholar 

  14. Garzon R, Marcucci G, Croce CM . Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010; 9: 775–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu H, Brannon AR, Reddy AR, Alexe G, Seiler MW, Arreola A et al. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell renal cell carcinoma. BMC Syst Biol 2010; 4: 51.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Higgs G, Slack F . The multiple roles of microRNA-155 in oncogenesis. J Clin Bioinform 2013; 3: 17.

    Article  Google Scholar 

  17. Pedersen IM, Otero D, Kao E, Miletic AV, Hother C, Ralfkiaer E et al. Onco-miR-155 targets SHIP1 to promote TNFalpha-dependent growth of B cell lymphomas. EMBO Mol Med 2009; 1: 288–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA 2007; 104: 16170–16175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Babar IA, Czochor J, Steinmetz A, Weidhaas JB, Glazer PM, Slack FJ . Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells. Cancer Biol Ther 2011; 12: 908–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Wei W, Cheng N, Wang K, Li B, Jiang X et al. Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology (Baltimore, MD) 2012; 56: 1631–1640.

    Article  CAS  Google Scholar 

  21. Cai ZK, Chen Q, Chen YB, Gu M, Zheng DC, Zhou J et al. microRNA-155 promotes the proliferation of prostate cancer cells by targeting annexin 7. Mol Med Rep 2015; 11: 533–538.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang S, Zhang H-W, Lu M-H, He X-H, Li Y, Gu H et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res 2010; 70: 3119–3127.

    Article  CAS  PubMed  Google Scholar 

  23. Koudelakova V, Berkovcova J, Trojanec R, Vrbkova J, Radova L, Ehrmann J et al. Evaluation of HER2 gene status in breast cancer samples with indeterminate fluorescence in situ hybridization by quantitative real-time PCR. J Mol Diagn 2015; 17: 446–455.

    Article  CAS  PubMed  Google Scholar 

  24. Owens MA, Horten BC, Da Silva MM . HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin Breast Cancer 2004; 5: 63–69.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang S, Zhang LF, Zhang HW, Hu S, Lu MH, Liang S et al. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J 2012; 31: 1985–1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 2008; 28: 6773–6784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang S, Wang RH, Akagi K, Kim KA, Martin BK, Cavallone L et al. Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat Med 2011; 17: 1275–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dinami R, Ercolani C, Petti E, Piazza S, Ciani Y, Sestito R et al. miR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res 2014; 74: 4145–4156.

    Article  CAS  PubMed  Google Scholar 

  29. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37: 495–500.

    Article  CAS  PubMed  Google Scholar 

  30. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  31. Scott GK, Marden C, Xu F, Kirk L, Benz CC . Transcriptional repression of ErbB2 by histone deacetylase inhibitors detected by a genomically integrated ErbB2 promoter-reporting cell screen. Mol Cancer Ther 2002; 1: 385–392.

    CAS  PubMed  Google Scholar 

  32. Kim YJ, Greer CB, Cecchini KR, Harris LN, Tuck DP, Kim TH . HDAC inhibitors induce transcriptional repression of high copy number genes in breast cancer through elongation blockade. Oncogene 2013; 32: 2828–2835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sandhu SK, Volinia S, Costinean S, Galasso M, Neinast R, Santhanam R et al. miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Emu-miR-155 transgenic mouse model. Proc Natl Acad Sci USA 2012; 109: 20047–20052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Witt O, Deubzer HE, Milde T, Oehme I . HDAC family: What are the cancer relevant targets? Cancer Lett 2009; 277: 8–21.

    Article  CAS  PubMed  Google Scholar 

  35. Muller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J et al. Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer—overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer 2013; 13: 215.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Melton C, Judson RL, Blelloch R . Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 2010; 463: 621–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang S, Wu S, Ding J, Lin J, Wei L, Gu J et al. MicroRNA-181a modulates gene expression of zinc finger family members by directly targeting their coding regions. Nucleic Acids Res 2010; 38: 7211–7218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J et al. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One 2010; 5: e9429.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang X, Li M, Zuo K, Li D, Ye M, Ding L et al. Upregulated miR-155 in papillary thyroid carcinoma promotes tumor growth by targeting APC and activating Wnt/beta-catenin signaling. J Clin Endocrinol Metab 2013; 98: E1305–E1313.

    Article  CAS  PubMed  Google Scholar 

  40. Pouliot LM, Chen YC, Bai J, Guha R, Martin SE, Gottesman MM et al. Cisplatin sensitivity mediated by WEE1 and CHK1 is mediated by miR-155 and the miR-15 family. Cancer Res 2012; 72: 5945–5955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He M, Xu Z, Ding T, Kuang DM, Zheng L . MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta. Cell Mol Immunol 2009; 6: 343–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu J, Guo H, Treekitkarnmongkol W, Li P, Zhang J, Shi B et al. 14-3-3zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition. Cancer Cell 2009; 16: 195–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mittendorf EA, Wu Y, Scaltriti M, Meric-Bernstam F, Hunt KK, Dawood S et al. Loss of HER2 amplification following trastuzumab-based neoadjuvant systemic therapy and survival outcomes. Clin Cancer Res 2009; 15: 7381–7388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qin W, Ren Q, Liu T, Huang Y, Wang J . MicroRNA-155 is a novel suppressor of ovarian cancer-initiating cells that targets CLDN1. FEBS Lett 2013; 587: 1434–1439.

    Article  CAS  PubMed  Google Scholar 

  45. Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 2015; 518: 107–110.

    Article  CAS  PubMed  Google Scholar 

  46. American Type Culture Collection. Cell Line Verification Test Recommendations; ATCC Recommends Cell Line Verification Tests and Guidelines for Publishing, ATCC Technical Bulletin No. 8. American Type Culture Collection: Manassas, VA, 2007.

  47. Zhao S, Gou L-T, Zhang M, Zu L-D, Hua M-M, Hua Y et al. piRNA-triggered MIWI ubiquitination and removal by APC/C in late spermatogenesis. Dev Cell 2013; 24: 13–25.

    Article  CAS  PubMed  Google Scholar 

  48. Wang L, Zhang LF, Wu J, Xu SJ, Xu YY, Li D et al. IL-1beta-mediated repression of microRNA-101 is crucial for inflammation-promoted lung tumorigenesis. Cancer Res 2014; 74: 4720–4730.

    Article  CAS  PubMed  Google Scholar 

  49. Albini A, Benelli R . The chemoinvasion assay: a method to assess tumor and endothelial cell invasion and its modulation. Nat Protocols 2007; 2: 504–511.

    Article  CAS  PubMed  Google Scholar 

  50. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10 A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Gao-Xiang Ge for suggestions and critical comments on the manuscript. This work was supported by grants from the Ministry of Science and Technology of China (2012CB910803, 2014CB943103 and 2014CB964802), the National Natural Science Foundation of China (31325008, 91419307, 81502267, and 31300656), the Science and Technology Commission of the Shanghai Municipality (13ZR1464300 and 16XD1404900), and the Chinese Academy of Sciences (KJZD-EW-L01-2 and 2013KIP202) and Foundation of Key Laboratory of Gene Engineering of the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-F Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, XH., Zhu, W., Yuan, P. et al. miR-155 downregulates ErbB2 and suppresses ErbB2-induced malignant transformation of breast epithelial cells. Oncogene 35, 6015–6025 (2016). https://doi.org/10.1038/onc.2016.132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.132

This article is cited by

Search

Quick links