Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

TRIMming p53’s anticancer activity

Abstract

Several TRIM proteins control abundance and activity of p53. Along this route, TRIM proteins have a serious impact on carcinogenesis and prognosis for cancer patients. In the past years, a significant increase has been made in our understanding of how the TRIM protein family controls p53 activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Riley T, Sontag E, Chen P, Levine A . Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 2008; 9: 402–412.

    Article  CAS  PubMed  Google Scholar 

  2. Vaseva AV, Marchenko ND, Moll UM . The transcription-independent mitochondrial p53 program is a major contributor to nutlin-induced apoptosis in tumor cells. Cell Cycle 2009; 8: 1711–1719.

    Article  CAS  PubMed  Google Scholar 

  3. Dahm-Daphi J, Hubbe P, Horvath F, El-Awady RA, Bouffard KE, Powell SE et al. Nonhomologous end-joining of site-specific but not of radiation-induced DNA double-strand breaks is reduced in the presence of wild-type p53. Oncogene 2005; 24: 1663–1672.

    Article  CAS  PubMed  Google Scholar 

  4. Boehme KA, Blattner C . Regulation of p53—insights into a complex process. Crit Rev Biochem Mol Biol 2009; 44: 367–392.

    Article  CAS  PubMed  Google Scholar 

  5. Meroni G, Diez-Roux G . TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. Bioessays 2005; 27: 1147–1157.

    Article  CAS  PubMed  Google Scholar 

  6. Chu Y, Yang X . SUMO E3 ligase activity of TRIM proteins. Oncogene 2011; 30: 1108–1116.

    Article  CAS  PubMed  Google Scholar 

  7. Zou W, Zhang DE . The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J Biol Chem 2006; 281: 3989–3994.

    Article  CAS  PubMed  Google Scholar 

  8. Battivelli EJ, Migraine D, Lecossier S, Matsuoka D, Perez-Bercoff S, Saragosti F et al. Modulation of TRIM5alpha activity in human cells by alternatively spliced TRIM5 isoforms. J Virol 2011; 85: 7828–7835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nisole S, Maroui MA, Mascle XH, Aubry M, Chelbi-Alix MK . Differential roles of PML isoforms. Front Oncol 2013; 3: 125.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cambiaghi V, Giuliani V, Lombardi S, Marinelli C, Toffalorio F, Pellici PG . TRIM proteins in cancer. Adv Exp Med Biol 2012; 770: 77–91.

    Article  CAS  PubMed  Google Scholar 

  11. Mu ZM, Chin KV, Liu JH, Lozano G, Chang KS . PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol Cell Biol 1994; 14: 6858–6867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Le XF, Vallian S, Mu ZM, HungMC, Chang KS . Recombinant PML adenovirus suppresses growth and tumorigenicity of human breast cancer cells by inducing G1 cell cycle arrest and apoptosis. Oncogene 1998; 16: 1839–1849.

    Article  CAS  PubMed  Google Scholar 

  13. Louria-Hayon I, Grossman T, Sionov RV, Alsheich O, Pandolfi PP, Haupt Y . The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J Biol Chem 2003; 278: 33134–33141.

    Article  CAS  PubMed  Google Scholar 

  14. Yang S, Kuo C, Bisi JE, Kim MK . PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol 2002; 4: 865–870.

    Article  CAS  PubMed  Google Scholar 

  15. Guo A, Salomoni P, Luo J, Shih A, Zhong S, Gu W et al. The function of PML in p53-dependent apoptosis. Nat Cell Biol 2000; 2: 730–736.

    Article  CAS  PubMed  Google Scholar 

  16. Bischof O, Kirsh O, Pearson M, Itahana K, Pelicci PG, Dejean A . Deconstructing PML-induced premature senescence. EMBO J 2002; 21: 3358–3369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hofmann T, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W et al. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 2002; 4: 1–10.

    Article  CAS  PubMed  Google Scholar 

  18. Alsheich-Bartok O, Haupt S, Alkalay-Snir I, Saito S, Appella E, Haupt Y . PML enhances the regulation of p53 by CK1 in response to DNA damage. Oncogene 2008; 27: 3653–3661.

    Article  CAS  PubMed  Google Scholar 

  19. Li Q, He Y, Wei L, Wu X, Wu D, Lin S et al. AXIN is an essential co-activator for the promyelocytic leukemia protein in p53 activation. Oncogene 2011; 30: 1194–1204.

    Article  CAS  PubMed  Google Scholar 

  20. Rokudai S, Laptenko O, Arnal SM, Taya Y, Kitabayashi I, Prives C . MOZ increases p53 acetylation and premature senescence through its complex formation with PML. Proc Natl Acad Sci USA 2013; 110: 3895–3900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haupt S, di Agostino S, Mizrahi I, Alsheich-Bartok O, Voorhoeve M, Damalas A et al. Promyelocytic leukemia protein is required for gain of function by mutant p53. Cancer Res 2009; 69: 4818–4826.

    Article  CAS  PubMed  Google Scholar 

  22. de Stanchina E, Querido E, Narita M, Davuluri RV, Pandolfi PP, Ferbeyre G et al. PML is a direct p53 target that modulates p53 effector functions. Mol Cell 2004; 13: 523–535.

    Article  CAS  PubMed  Google Scholar 

  23. Insinga A, Monestiroli S, Ronzoni S, Carbone R, Pearson M, Pruneri G et al. Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. EMBO J 2004; 23: 1144–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu H, Wu L, Maki CG . MDM2 and promyelocytic leukemia antagonize each other through their direct interaction with p53. J Biol Chem 2003; 278: 49286–49292.

    Article  CAS  PubMed  Google Scholar 

  25. Wei X, Yu ZK, Ramalingam A, Yu JH, Bloch DB et al. Physical and functional interactions between PML and MDM2. J Biol Chem 2003; 278: 29288–29297.

    Article  CAS  PubMed  Google Scholar 

  26. Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KF, Pandolfi PP . PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 2004; 6: 665–672.

    Article  CAS  PubMed  Google Scholar 

  27. Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 2004; 96: 269–279.

    CAS  PubMed  Google Scholar 

  28. Allton K, Jain AK, Herz HM, Tsai WW, Jung SY, Qin J et al. Trim24 targets endogenous p53 for degradation. Proc Natl Acad Sci USA 2009; 106: 11612–11616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jain AK, Allton K, Duncan AD, Barton MC . TRIM24 is a p53-induced E3-ubiquitin ligase that undergoes ATM-mediated phosphorylation and autodegradation during DNA damage. Mol Cell Biol 2014; 34: 2695–2709.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tsai WW, Wang Z, Yiu TT, Akdemir KC, Xia W, Winter S et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature 2010; 468: 927–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cui Z, Cao W, Li J, Song X, Mao L, Chen W . TRIM24 overexpression is common in locally advanced head and neck squamous cell carcinoma and correlates with aggressive malignant phenotypes. PLoS One 2013; 8: e63887.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Inoue S, Orimo A, Hosoi T, Kondo S, Toyoshima H, Kondo T et al. Genomic binding-site cloning reveals an estrogen-responsive gene that encodes a RING finger protein. Proc Natl Acad Sci USA 1993; 90: 11117–11121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Urano T, Saito T, Tsukui T, Fujita M, Hosoi T, Muramatsu M et al. Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth. Nature 2002; 417: 871–875.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang P, Elabd S, Hammer S, Solozobova V, Yan H, Bartel F et al. TRIM25 has a dual function in the p53/Mdm2 circuit. Oncogene 2015; 34: 5729–5738.

    Article  CAS  PubMed  Google Scholar 

  35. Sakuma M, Akahira J, Suzuki T, Inoue S, Ito K, Moriya T et al. Expression of estrogen-responsive finger protein (Efp) is associated with advanced disease in human epithelial ovarian cancer. Gynecol Oncol 2005; 99: 664–670.

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki T, Urano T, Tsukui T, Horie-Inoue K, Moriya T, Ishida T et al. Estrogen-responsive finger protein as a new potential biomarker for breast cancer. Clin Cancer Res 2005; 11: 6148–6154.

    Article  CAS  PubMed  Google Scholar 

  37. Qin Y, Cui H, Zhang H . Overexpression of TRIM25 in lung cancer regulates tumor cell progression. Technol Cancer Res Treat 2015, e-pub ahead of print 25 June 2015.

  38. Kapp LN, Painter RB, Yu LC, van Loon N, Richard CW 3rd, James MR et al. Cloning of a candidate gene for ataxia-telangiectasia group D. Am J Hum Genet 1992; 51: 45–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Masuda Y, Takahashi H, Sato S, Tomomori-Sato C, Saraf A, Washburn MP et al. TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin. Nat Commun 2015; 6: 7299.

    Article  CAS  PubMed  Google Scholar 

  40. Yang H, Palmbos PL, Wang L, Kim E, Ney GM, Liu C et al. ATDC (Ataxia Telangiectasia Group D Complementing) promotes radioresistance through an interaction with the RNF8 ubiquitin ligase. J Biol Chem 2015; 290: 27146–27157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yuan Z, Villagra A, Peng L, Coppola D, Glozak M, Sotomayor EM et al. The ATDC (TRIM29) protein binds p53 and antagonizes p53-mediated functions. Mol Cell Biol 2010; 30: 3004–3015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sho T, Tsukiyama T, Sato T, Kondo T, Cheng J, Saku T et al. TRIM29 negatively regulates p53 via inhibition of Tip60. Biochim Biophys Acta 2011; 1813: 1245–1253.

    Article  CAS  PubMed  Google Scholar 

  43. Wang L, Heidt DG, Lee CJ, Yang H, Logsdon CD, Zhang L et al. Oncogenic function of ATDC in pancreatic cancer through Wnt pathway activation and beta-catenin stabilization. Cancer Cell 2009; 15: 207–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang ZP, Dong QZ, Cui QZ, Papavassiliou P, Wang ED, Wang EH . Ataxia-telangiectasia group D complementing gene (ATDC) promotes lung cancer cell proliferation by activating NF-kappaB pathway. PLoS One 2013; 8: e63676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fridell RA, Harding LS, Bogerd HP, Cullen BR . Identification of a novel human zinc finger protein that specifically interacts with the activation domain of lentiviral Tat proteins. Virology 1995; 209: 347–357.

    Article  CAS  PubMed  Google Scholar 

  46. Liu J, Zhang C, Wang XL, Ly P, Belyi V, Xu-Monette ZY et al. E3 ubiquitin ligase TRIM32 negatively regulates tumor suppressor p53 to promote tumorigenesis. Cell Death Differ 2014; 21: 1792–1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tebaldi T, Zaccara S, Alessandrini F, Bisio A, Ciribilli Y, Inga A . Whole-genome cartography of p53 response elements ranked on transactivation potential. BMC Genomics 2015; 16: 464.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Horn EJ, Albor A, Liu Y, El Hizawi S, Vanderbeek GE, Babcock M et al. RING protein Trim32 associated with skin carcinogenesis has anti-apoptotic and E3-ubiquitin ligase properties. Carcinogenesis 2004; 25: 157–167.

    Article  CAS  PubMed  Google Scholar 

  49. Kano S, Miyajima N, Fukuda S, Hatakeyama S . Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2. Cancer Res 2008; 68: 5572–5580.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang L, Huang NJ, Chen C, Tang W, Kornbluth S . Ubiquitylation of p53 by the APC/C inhibitor Trim39. Proc Natl Acad Sci USA 2012; 109: 20931–20936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou Z, Ji Z, Wang Y, Li J, Cao H, Zhu HH et al. TRIM59 is up-regulated in gastric tumors, promoting ubiquitination and degradation of p53. Gastroenterology 2014; 147: 1043–1054.

    Article  CAS  PubMed  Google Scholar 

  52. Chen Y, Guo Y, Yang H, Shi G, Xu G, Shi J et al. TRIM66 overexpresssion contributes to osteosarcoma carcinogenesis and indicates poor survival outcome. Oncotarget 2015; 6: 23708–23719.

    PubMed  PubMed Central  Google Scholar 

  53. Vincent SR, Kwasnicka DA, Fretier P . A novel RING finger-B box-coiled-coil protein, GERP. Biochem Biophys Res Commun 2000; 279: 482–486.

    Article  CAS  PubMed  Google Scholar 

  54. Caratozzolo MF, Valetti A, Gigante M, Aiello I, Mastropasqua F, Marzano F et al. TRIM8 anti-proliferative action against chemo-resistant renal cell carcinoma. Oncotarget 2014; 5: 7446–7457.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kapanadze B, Kashuba V, Baranova A, Rasool O, van Everdink W, Liu Y et al. A cosmid and cDNA fine physical map of a human chromosome 13q14 region frequently lost in B-cell chronic lymphocytic leukemia and identification of a new putative tumor suppressor gene, Leu5. FEBS Lett 1998; 426: 266–270.

    Article  CAS  PubMed  Google Scholar 

  56. Lerner M, Corcoran M, Cepeda D, Nielsen ML, Zubarev R, Ponten F et al. The RBCC gene RFP2 (Leu5) encodes a novel transmembrane E3 ubiquitin ligase involved in ERAD. Mol Biol Cell 2007; 18: 1670–1682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Joo HM, Kim JY, Jeong JB, Seong KM, Nam SY, Yang KH et al. Ret finger protein 2 enhances ionizing radiation-induced apoptosis via degradation of AKT and MDM2. Eur J Cell Biol 2011; 90: 420–431.

    Article  CAS  PubMed  Google Scholar 

  58. Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG et al. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 1996; 10: 2067–2078.

    Article  CAS  PubMed  Google Scholar 

  59. Underhill C, Qutob MS, Yee SP, Torchia J . A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem 2000; 275: 40463–40470.

    Article  CAS  PubMed  Google Scholar 

  60. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ 3rd . SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 2002; 16: 919–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schultz DC, Friedman JR, Rauscher FJ 3rd . Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 2001; 15: 428–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang C, Ivanov A, Chen L, Fredericks WJ, Seto E, Rauscher FJ 3rd et al. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J 2005; 24: 3279–3290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang B, O'Herrin SM, Wu J, Reagan-Shaw S, Ma Y, Bhat KM et al. MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res 2007; 67: 9954–9962.

    Article  CAS  PubMed  Google Scholar 

  64. Liu L, Zhao E, Li C, Huang L, Siao L, Cheng L et al. TRIM28, a new molecular marker predicting metastasis and survival in early-stage non-small cell lung cancer. Cancer Epidemiol 2013; 37: 71–78.

    Article  CAS  PubMed  Google Scholar 

  65. Addison JB, Koontz C, Fugett JH, Creighton CJ, Chen D, Farrugia MK et al. KAP1 promotes proliferation and metastatic progression of breast cancer cells. Cancer Res 2015; 75: 344–355.

    Article  CAS  PubMed  Google Scholar 

  66. Ho J, Kong JW, Choong LY, Loh MC, Toy W, Chong PK et al. Novel breast cancer metastasis-associated proteins. J Proteome Res 2009; 8: 583–594.

    Article  CAS  PubMed  Google Scholar 

  67. Herquel B, Ouararhni K, Khetchoumian K, Ignat M, Teletin M, Mark M . Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma. Proc Natl Acad Sci USA 2011; 108: 8212–8217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tanaka M, Tanji K, Niida M, Kamitani T . Dynamic movements of Ro52 cytoplasmic bodies along microtubules. Histochem Cell Biol 2010; 133: 273–284.

    Article  CAS  PubMed  Google Scholar 

  69. Reddy BA, van der Knaap JA, Bot AG, Mohd-Sarip A, Dekkers DH, Timmermans MA et al. Nucleotide biosynthetic enzyme GMP synthase is a TRIM21-controlled relay of p53 stabilization. Mol Cell 2014; 53: 458–470.

    Article  CAS  PubMed  Google Scholar 

  70. Faesen AC, Dirac AM, Shanmugham A, Ovaa H, Perrakis A, Sixma TK . Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase. Mol Cell 2011; 44: 147–159.

    Article  CAS  PubMed  Google Scholar 

  71. Kuboshima M, Shimada H, Liu TL, Nomura F, Takiguchi M, Hiwasa T et al. Presence of serum tripartite motif-containing 21 antibodies in patients with esophageal squamous cell carcinoma. Cancer Sci 2006; 97: 380–386.

    Article  CAS  PubMed  Google Scholar 

  72. Obad S, Brunnstrom H, Vallon-Christersson J, Borg A, Drott K, Gullberg U . Staf50 is a novel p53 target gene conferring reduced clonogenic growth of leukemic U-937 cells. Oncogene 2004; 23: 4050–4059.

    Article  CAS  PubMed  Google Scholar 

  73. Sun Y, Ho GH, Koong HN, Sivaramakrishnan G, Ang WT, Koh QM et al. Down-regulation of tripartite-motif containing 22 expression in breast cancer is associated with a lack of p53-mediated induction. Biochem Biophys Res Commun 2013; 441: 600–606.

    Article  CAS  PubMed  Google Scholar 

  74. Wittmann S, Wunder C, Zirn B, Furtwangler R, Wegert J, Graf N et al. New prognostic markers revealed by evaluation of genes correlated with clinical parameters in Wilms tumors. Genes Chromosomes Cancer 2008; 47: 386–395.

    Article  CAS  PubMed  Google Scholar 

  75. Kung CP, Khaku S, Jennis M, Zhou Y, Murphy ME . Identification of TRIML2, a novel p53 target, that enhances p53 sumoylation and regulates the transactivation of proapoptotic genes. Mol Cancer Res 2014; 13: 250–262.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ozato K, Shin DM, Chang TH, Morse HC 3rd . TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 2008; 8: 849–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Short KM, Cox TC . Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding. J Biol Chem 2006; 281: 8970–8980.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

CB and GM are supported by COST-BM1307. The work in GM’s laboratory is funded by FIRB-MIUR Grant RBAP11Z4Z9 and AFM-TELETHON Grant 17746.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Blattner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elabd, S., Meroni, G. & Blattner, C. TRIMming p53’s anticancer activity. Oncogene 35, 5577–5584 (2016). https://doi.org/10.1038/onc.2016.33

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.33

This article is cited by

Search

Quick links