Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A CDK2 activity signature predicts outcome in CDK2-low cancers

Abstract

The role of cyclin-dependent kinase 2 (CDK2) in cancer is controversial. A major hurdle is the availability of tools to easily assess its activity across many samples. Here, we introduce a transcriptional signature to specifically track CDK2 activity. It responds to genetic and chemical perturbations in the CDK-RB-E2F axis, correlates with mitotic rate in vitro and in vivo and reacts rapidly to changes in CDK2 activity during cell cycle progression. We find that CDK2 activity is specifically elevated in human testes, mirroring its critical function in mice, and report very distinct profiles across human cancers. Increased CDK2 activity decreases risk in colon cancer, but elevates poor outcome two- to fivefold in specific tumors, including low grade glioma, kidney, thyroid, adrenocortical and prostate cancer. These are typically ‘CDK2-low’ cancers, suggesting that above a certain threshold CDK2 promotes progression, but further increases do not influence outcome. Multivariate analysis revealed that the CDK2 signature is the most important predictive feature in these cancers versus dozens of other clinical parameters, such as tumor grade or mitotic index. Thus, transcriptome data provides a novel, straightforward method to monitor CDK2 activity, implicates key roles for the kinase in a subset of human tissues and tumors and enhances cancer risk prediction. The strategy used here for CDK2 could be applied to other kinases that influence transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lim S, Kaldis P . Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Dev Camb Engl 2013; 140: 3079–3093.

    CAS  Google Scholar 

  2. Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G et al. Cyclin-dependent kinases: a family portrait. Nat Cell Biol 2009; 11: 1275–1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burkhart DL, Sage J . Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 2008; 8: 671–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Palancade B, Bensaude O . Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. Eur J Biochem 2003; 270: 3859–3870.

    Article  CAS  PubMed  Google Scholar 

  5. Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 2008; 455: 547–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morris EJ, Ji J-Y, Yang F, Di Stefano L, Herr A, Moon N-S et al. E2F1 represses β-catenin transcription and is antagonized by both pRB and CDK8. Nature 2008; 455: 552–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng L, Ammosova T, Pumfery A, Kashanchi F, Nekhai S . HIV-1 Tat Interaction with RNA polymerase II C-terminal domain (CTD) and a dynamic association with CDK2 induce CTD phosphorylation and transcription from HIV-1 promoter. J Biol Chem 2002; 277: 33922–33929.

    Article  CAS  PubMed  Google Scholar 

  8. Nekhai S, Zhou M, Fernandez A, Lane WS, Lamb NJC, Brady J et al. HIV-1 Tat-associated RNA polymerase C-terminal domain kinase, CDK2, phosphorylates CDK7 and stimulates Tat-mediated transcription. Biochem J 2002; 364: 649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chi Y, Welcker M, Hizli AA, Posakony JJ, Aebersold R, Clurman BE . Identification of CDK2 substrates in human cell lysates. Genome Biol 2008; 9: R149.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES . The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 2015; 14: 130–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Malumbres M, Barbacid M . Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009; 9: 153–166.

    Article  CAS  PubMed  Google Scholar 

  12. Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M et al. Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell 2003; 12: 381–392.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang W, Koepp DM . Fbw7 isoform interaction contributes to cyclin E proteolysis. Mol Cancer Res MCR 2006; 4: 935–943.

    Article  CAS  PubMed  Google Scholar 

  14. Ishihara H, Yoshida T, Kawasaki Y, Kobayashi H, Yamasaki M, Nakayama S et al. A new cancer diagnostic system based on a CDK profiling technology. Biochim Biophys Acta Mol Basis Dis 2005; 1741: 226–233.

    Article  CAS  Google Scholar 

  15. Spencer SL, Cappell SD, Tsai F-C, Overton KW, Wang CL, Meyer T . The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 2013; 155: 369–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Akli S, Pelt CSV, Bui T, Meijer L, Keyomarsi K . Cdk2 is required for breast cancer mediated by the low-molecular-weight isoform of cyclin E. Cancer Res 2011; 71: 3377–3386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Campaner S, Doni M, Hydbring P, Verrecchia A, Bianchi L, Sardella D et al. Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat Cell Biol 2010; 12: 54–59.

    Article  CAS  PubMed  Google Scholar 

  18. Gillam MP, Nimbalkar D, Sun L, Christov K, Ray D, Kaldis P et al. MEN1 tumorigenesis in the pituitary and pancreatic islet requires Cdk4 but not Cdk2. Oncogene 2014; 124: 1056–1061.

    Google Scholar 

  19. Macias E, Kim Y, Marval PLM de, Klein-Szanto A, Rodriguez-Puebla ML . Cdk2 deficiency decreases ras/CDK4-dependent malignant progression, but not myc-induced tumorigenesis. Cancer Res 2007; 67: 9713–9720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martín A, Odajima J, Hunt SL, Dubus P, Ortega S, Malumbres M et al. Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27Kip1 and p21Cip1. Cancer Cell 2005; 7: 591–598.

    Article  PubMed  Google Scholar 

  21. Padmakumar VC, Aleem E, Berthet C, Hilton MB, Kaldis P . Cdk2 and Cdk4 activities are dispensable for tumorigenesis caused by the loss of p53. Mol Cell Biol 2009; 29: 2582–2593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Puyol M, Martín A, Dubus P, Mulero F, Pizcueta P, Khan G et al. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 2010; 18: 63–73.

    Article  CAS  PubMed  Google Scholar 

  23. Ray D, Terao Y, Christov K, Kaldis P, Kiyokawa H . Cdk2-null mice are resistant to ErbB-2-induced mammary tumorigenesis. Neoplasia 2011; 13: 439–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hongo F, Takaha N, Oishi M, Ueda T, Nakamura T, Naitoh Y et al. CDK1 and CDK2 activity is a strong predictor of renal cell carcinoma recurrence. Urol Oncol 2014; 32: 1240–1246.

    Article  CAS  PubMed  Google Scholar 

  25. Kim SJ, Nakayama S, Miyoshi Y, Taguchi T, Tamaki Y, Matsushima T et al. Determination of the specific activity of CDK1 and CDK2 as a novel prognostic indicator for early breast cancer. Ann Oncol 2008; 19: 68–72.

    Article  CAS  PubMed  Google Scholar 

  26. Kim SJ, Nakayama S, Shimazu K, Tamaki Y, Akazawa K, Tsukamoto F et al. Recurrence risk score based on the specific activity of CDK1 and CDK2 predicts response to neoadjuvant paclitaxel followed by 5-fluorouracil, epirubicin and cyclophosphamide in breast cancers. Ann Oncol Off J Eur Soc Med Oncol 2012; 23: 891–897.

    Article  CAS  Google Scholar 

  27. Kubo H, Suzuki T, Matsushima T, Ishihara H, Uchino K, Suzuki S et al. Cyclin-dependent kinase-specific activity predicts the prognosis of stage I and stage II non-small cell lung cancer. BMC Cancer 2014; 14: 755.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sangwan M, McCurdy SR, Livne-bar I, Ahmad M, Wrana JL, Chen D et al. Established and new mouse models reveal E2f1 and Cdk2 dependency of retinoblastoma, and expose effective strategies to block tumor initiation. Oncogene 2012; 31: 5019–5028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 2008; 132: 487–498.

    Article  CAS  PubMed  Google Scholar 

  30. Wang L, Hurley DG, Watkins W, Araki H, Tamada Y, Muthukaruppan A et al. Cell cycle gene networks are associated with melanoma prognosis. PLoS One 2012; 7: e34247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Molenaar JJ, Ebus ME, Geerts D, Koster J, Lamers F, Valentijn LJ et al. Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells. Proc Natl Acad Sci 2009; 106: 12968–12973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012; 483: 570–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cline MS, Craft B, Swatloski T, Goldman M, Ma S, Haussler D et al. Exploring TCGA Pan-Cancer Data at the UCSC Cancer Genomics Browser. Sci Rep 2013; 3: 2652.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kronja I, Orr-Weaver TL . Translational regulation of the cell cycle: when, where, how and why? Philos Trans R Soc Lond B Biol Sci 2011; 366: 3638–3652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bracken AP, Ciro M, Cocito A, Helin K . E2F target genes: unraveling the biology. Trends Biochem Sci 2004; 29: 409–417.

    Article  CAS  PubMed  Google Scholar 

  36. Berkofsky-Fessler W, Nguyen TQ, Delmar P, Molnos J, Kanwal C, DePinto W et al. Preclinical biomarkers for a cyclin-dependent kinase inhibitor translate to candidate pharmacodynamic biomarkers in phase I patients. Mol Cancer Ther 2009; 8: 2517–2525.

    Article  CAS  PubMed  Google Scholar 

  37. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 2002; 13: 1977–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aleem E, Kiyokawa H, Kaldis P . Cdc2–cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol 2005; 7: 831–836.

    Article  CAS  PubMed  Google Scholar 

  39. Satyanarayana A, Kaldis P . Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 2009; 28: 2925–2939.

    Article  CAS  PubMed  Google Scholar 

  40. Adler AS, McCleland ML, Truong T, Lau S, Modrusan Z, Soukup TM et al. CDK8 maintains tumor dedifferentiation and embryonic stem cell pluripotency. Cancer Res 2012; 72: 2129–2139.

    Article  CAS  PubMed  Google Scholar 

  41. Galbraith MD, Allen MA, Bensard CL, Wang X, Schwinn MK, Qin B et al. HIF1A employs CDK8-mediator to stimulate RNAPII elongation in response to hypoxia. Cell 2013; 153: 1327–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsutsui T, Fukasawa R, Tanaka A, Hirose Y, Okhuma Y . Identification of target genes for the CDK subunits of the Mediator complex. Genes Cells Devoted Mol Cell Mech 2011; 16: 1208–1218.

    Article  CAS  Google Scholar 

  43. Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR . Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol 2011; 29: 1039–1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen S, Bohrer LR, Rai AN, Pan Y, Gan L, Zhou X et al. Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nat Cell Biol 2010; 12: 1108–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee JK, Havaleshko DM, Cho H, Weinstein JN, Kaldjian EP, Karpovich J et al. A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc Natl Acad Sci USA 2007; 104: 13086–13091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stojadinovic A, Ghossein RA, Hoos A, Nissan A, Marshall D, Dudas M et al. Adrenocortical carcinoma: clinical, morphologic, and molecular characterization. J Clin Oncol Off J Am Soc Clin Oncol 2002; 20: 941–950.

    Article  CAS  Google Scholar 

  47. Stojadinovic A, Brennan MF, Hoos A, Omeroglu A, Leung DHY, Dudas ME et al. Adrenocortical adenoma and carcinoma: histopathological and molecular comparative analysis. Mod Pathol 2003; 16: 742–751.

    Article  PubMed  Google Scholar 

  48. Weiss LM . Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am J Surg Pathol 1984; 8: 163–169.

    Article  CAS  PubMed  Google Scholar 

  49. Weiss LM, Medeiros LJ, Vickery AL . Pathologic features of prognostic significance in adrenocortical carcinoma. Am J Surg Pathol 1989; 13: 202–206.

    Article  CAS  PubMed  Google Scholar 

  50. Heaton JH, Wood MA, Kim AC, Lima LO, Barlaskar FM, Almeida MQ et al. Progression to adrenocortical tumorigenesis in mice and humans through insulin-like growth factor 2 and β-catenin. Am J Pathol 2012; 181: 1017–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Assié G, Letouzé E, Fassnacht M, Jouinot A, Luscap W, Barreau O et al. Integrated genomic characterization of adrenocortical carcinoma. Nat Genet 2014; 46: 607–612.

    Article  PubMed  Google Scholar 

  52. GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat Genet 2013; 45: 580–585.

    Article  Google Scholar 

  53. Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P . Cdk2 knockout mice are viable. Curr Biol 2003; 13: 1775–1785.

    Article  CAS  PubMed  Google Scholar 

  54. Ortega S, Prieto I, Odajima J, Martín A, Dubus P, Sotillo R et al. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 2003; 35: 25–31.

    Article  CAS  PubMed  Google Scholar 

  55. Li J-Q, Miki H, Ohmori M, Wu F, Funamoto Y . Expression of cyclin E and cyclin-dependent kinase 2 correlates with metastasis and prognosis in colorectal carcinoma. Hum Pathol 2001; 32: 945–953.

    Article  CAS  PubMed  Google Scholar 

  56. Breiman L . Random forests. Mach Learn 2001; 45: 5–32.

    Article  Google Scholar 

  57. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostat Oxf Engl 2003; 4: 249–264.

    Article  Google Scholar 

  58. Zhu J, Sanborn JZ, Benz S, Szeto C, Hsu F, Kuhn RM et al. The UCSC Cancer Genomics Browser. Nat Methods 2009; 6: 239–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1–pl1.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G Bader, F Roth and J Wrana for helpful comments. This project was funded by grants to RB from the Canadian Institutes for Health Research (CIHR), Foundation Fighting Blindness Canada, Krembil Foundation, Ontario Institute for Cancer Research through funding provided by the Government of Ontario and the Terry Fox Research Institute. SRM was supported by scholarships from Peterborough KM Hunter Foundation, CIHR (Vanier Graduate Scholarship) and the CIHR Biological Therapeutics Program.

Author contributions

SRM and RB designed the experiments and drafted the manuscript. MP and MA gathered samples and performed microarray on retinal samples. The data analysis was performed by SRM. SRM and RB discussed and revised the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Bremner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCurdy, S., Pacal, M., Ahmad, M. et al. A CDK2 activity signature predicts outcome in CDK2-low cancers. Oncogene 36, 2491–2502 (2017). https://doi.org/10.1038/onc.2016.409

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.409

This article is cited by

Search

Quick links