Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Role of Akt2 in regulation of metastasis suppressor 1 expression and colorectal cancer metastasis

Abstract

Survival signaling is critical for the metastatic program of cancer cells. The current study investigated the role of Akt survival proteins in colorectal cancer (CRC) metastasis and explored potential mechanisms of Akt-mediated metastasis regulation. Using an orthotopic implantation model in mice, which uniquely recapitulates the entire multistep process of CRC metastasis, combined with an inducible system of short hairpin RNA-mediated Akt isoform knockdown in human CRC cells, our studies confirm a role of Akt2 in CRC cell dissemination to distant organs in vivo. Akt2 deficiency profoundly inhibited the development of liver lesions in mice, whereas Akt1 had no effect under the experimental conditions used in the study. Array analysis of human metastatic genes identified the scaffolding protein metastasis suppressor 1 (MTSS1) as a novel Akt2-regulated gene. Inducible loss of Akt2 in CRC cells robustly upregulated MTSS1 at the messenger RNA and protein level, and the accumulated protein was functionally active as shown by its ability to engage an MTSS1-Src-cortactin inhibitory axis. MTSS1 expression led to a marked reduction in levels of functional cortacin (pcortactin Y421), an actin nucleation-promoting factor that has a crucial role in cancer cell invasion and metastasis. MTSS1 was also shown to mediate suppressive effects of Akt2 deficiency on CRC cell viability, survival, migration and actin polymerization in vitro. The relevance of these findings to human CRC is supported by analysis of The Cancer Genome Atlas (TCGA) and NCBI GEO data sets, which demonstrated inverse changes in expression of Akt2 and MTSS1 during CRC progression. Taken together, the data identify MTSS1 as a new Akt2-regulated gene, and point to suppression of MTSS1 as a key step in the metastasis-promoting effects of Akt2 in CRC cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A et al. Cancer statistics, 2005. CA Cancer J Clin 2005; 55: 10–30.

    Article  Google Scholar 

  2. Jin K, Gao W, Lu Y, Lan H, Teng L, Cao F . Mechanisms regulating colorectal cancer cell metastasis into liver (Review). Oncol Lett 2012; 3: 11–15.

    Article  CAS  Google Scholar 

  3. National Cancer InstituteSEER Stat Fact Sheets: Colon and Rectum Cancer. Surveillance, Epidemiology and End Results Program [online] 2010..

  4. Weigelt B, Peterse JL, van 't Veer LJ . Breast cancer metastasis: markers and models. Nat Rev Cancer 2005; 5: 591–602.

    Article  CAS  Google Scholar 

  5. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 2009; 16: 116–122.

    Article  Google Scholar 

  6. Grabinski N, Bartkowiak K, Grupp K, Brandt B, Pantel K, Jucker M . Distinct functional roles of Akt isoforms for proliferation, survival, migration and EGF-mediated signalling in lung cancer derived disseminated tumor cells. Cell Signal 2011; 23: 1952–1960.

    Article  CAS  Google Scholar 

  7. Salmena L, Carracedo A, Pandolfi PP . Tenets of PTEN tumor suppression. Cell 2008; 133: 403–414.

    Article  CAS  Google Scholar 

  8. Manning BD, Cantley LC . AKT/PKB signaling: navigating downstream. Cell 2007; 129: 1261–1274.

    Article  CAS  Google Scholar 

  9. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307: 1098–1101.

    Article  CAS  Google Scholar 

  10. Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 1997; 277: 567–570.

    Article  CAS  Google Scholar 

  11. Brognard J, Sierecki E, Gao T, Newton AC . PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 2007; 25: 917–931.

    Article  CAS  Google Scholar 

  12. Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D et al. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 2009; 16: 115–125.

    Article  CAS  Google Scholar 

  13. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001; 292: 1728–1731.

    Article  CAS  Google Scholar 

  14. Easton RM, Cho H, Roovers K, Shineman DW, Mizrahi M, Forman MS et al. Role for Akt3/protein kinase Bgamma in attainment of normal brain size. Mol Cell Biol 2005; 25: 1869–1878.

    Article  CAS  Google Scholar 

  15. Agarwal E, Brattain MG, Chowdhury S . Cell survival and metastasis regulation by Akt signaling in colorectal cancer. Cell Signal 2013; 25: 1711–1719.

    Article  CAS  Google Scholar 

  16. Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N et al. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol 2005; 171: 1023–1034.

    Article  CAS  Google Scholar 

  17. Yoeli-Lerner M, Yiu GK, Rabinovitz I, Erhardt P, Jauliac S, Toker A . Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell 2005; 20: 539–550.

    Article  CAS  Google Scholar 

  18. Chau NM, Ashcroft M . Akt2: a role in breast cancer metastasis. Breast Cancer Res 2004; 6: 55–57.

    Article  CAS  Google Scholar 

  19. Ericson K, Gan C, Cheong I, Rago C, Samuels Y, Velculescu VE et al. Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proc Natl Acad Sci USA 2010; 107: 2598–2603.

    Article  CAS  Google Scholar 

  20. Nakatani K, Thompson DA, Barthel A, Sakaue H, Liu W, Weigel RJ et al. Up-regulation of Akt3 in estrogen receptor-deficient breast cancers and androgen-independent prostate cancer lines. J Biol Chem 1999; 274: 21528–21532.

    Article  CAS  Google Scholar 

  21. Rychahou PG, Kang J, Gulhati P, Doan HQ, Chen LA, Xiao SY et al. Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc Natl Acad Sci USA 2008; 105: 20315–20320.

    Article  CAS  Google Scholar 

  22. Chowdhury S, Howell GM, Rajput A, Teggart CA, Brattain LE, Weber HR et al. Identification of a novel TGFbeta/PKA signaling transduceome in mediating control of cell survival and metastasis in colon cancer. PLoS One 2011; 6: e19335.

    Article  CAS  Google Scholar 

  23. Chowdhury S, Ongchin M, Sharratt E, Dominguez I, Wang J, Brattain MG et al. Intra-tumoral heterogeneity in metastatic potential and survival signaling between iso-clonal HCT116 and HCT116b human colon carcinoma cell lines. PLoS One 2013; 8: e60299.

    Article  CAS  Google Scholar 

  24. Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Are C, Brattain M et al. MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene 2013; 33: 5332–5340.

    Article  Google Scholar 

  25. Leiphrakpam PD, Rajput A, Mathiesen M, Agarwal E, Lazenby AJ, Are C et al. Ezrin expression and cell survival regulation in colorectal cancer. Cell Signal 2014; 26: 868–879.

    Article  CAS  Google Scholar 

  26. Wang J, Rajput A, Kan JL, Rose R, Liu XQ, Kuropatwinski K et al. Knockdown of Ron kinase inhibits mutant phosphatidylinositol 3-kinase and reduces metastasis in human colon carcinoma. J Biol Chem 2009; 284: 10912–10922.

    Article  CAS  Google Scholar 

  27. Williams B, Schneider RJ, Jamal S . Akt and PI3K-dependent but CREB-independent upregulation of MCAM by endothelin-3 in human melanocytes. Melanoma Res 2014; 24: 404–407.

    Article  CAS  Google Scholar 

  28. Navenot JM, Fujii N, Peiper SC . KiSS1 metastasis suppressor gene product induces suppression of tyrosine kinase receptor signaling to Akt, tumor necrosis factor family ligand expression, and apoptosis. Mol Pharmacol 2009; 75: 1074–1083.

    Article  CAS  Google Scholar 

  29. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH . Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 2007; 67: 1979–1987.

    Article  CAS  Google Scholar 

  30. Du P, Ye L, Li H, Yang Y, Jiang WG . The tumour suppressive role of metastasis suppressor-1, MTSS1, in human kidney cancer, a possible connection with the SHH pathway. J Exp Ther Oncol 2013; 10: 91–99.

    Google Scholar 

  31. Du P, Ye L, Ruge F, Yang Y, Jiang WG . Metastasis suppressor-1, MTSS1, acts as a putative tumour suppressor in human bladder cancer. Anticancer Res 2011; 31: 3205–3212.

    CAS  PubMed  Google Scholar 

  32. Xie F, Ye L, Chen J, Wu N, Zhang Z, Yang Y et al. The impact of metastasis suppressor-1, MTSS1, on oesophageal squamous cell carcinoma and its clinical significance. J Transl Med 2011; 9: 95.

    Article  Google Scholar 

  33. Zhou L, Li J, Shao QQ, Guo JC, Liang ZY, Zhou WX et al. Expression and significances of MTSS1 in pancreatic cancer. Pathol Oncol Res 2015; 22: 7–14.

    Article  Google Scholar 

  34. Fan H, Chen L, Zhang F, Quan Y, Su X, Qiu X et al. MTSS1, a novel target of DNA methyltransferase 3B, functions as a tumor suppressor in hepatocellular carcinoma. Oncogene 2011; 31: 2298–2308.

    Article  Google Scholar 

  35. Mattila PK, Salminen M, Yamashiro T, Lappalainen P . Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain. J Biol Chem 2003; 278: 8452–8459.

    Article  CAS  Google Scholar 

  36. Woodings JA, Sharp SJ, Machesky LM . MIM-B, a putative metastasis suppressor protein, binds to actin and to protein tyrosine phosphatase delta. Biochem J 2003; 371 (Pt 2): 463–471.

    Article  CAS  Google Scholar 

  37. Bershteyn M, Atwood SX, Woo WM, Li M, Oro AE . MIM and cortactin antagonism regulates ciliogenesis and Hedgehog signaling. Dev Cell 2010; 19: 270–283.

    Article  CAS  Google Scholar 

  38. Skrzypczak M, Goryca K, Rubel T, Paziewska A, Mikula M, Jarosz D et al. Modeling oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical reliability. PLoS One 2010; 5: e0013091.

    Article  Google Scholar 

  39. Arboleda MJ, Lyons JF, Kabbinavar FF, Bray MR, Snow BE, Ayala R et al. Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res 2003; 63: 196–206.

    CAS  PubMed  Google Scholar 

  40. Wolmark N, Cruz I, Redmond CK, Fisher B, Fisher ER . Tumor size and regional lymph node metastasis in colorectal cancer. A preliminary analysis from the NSABP clinical trials. Cancer 1983; 51: 1315–1322.

    Article  CAS  Google Scholar 

  41. Lee YG, Macoska JA, Korenchuk S, Pienta KJ . MIM, a potential metastasis suppressor gene in bladder cancer. Neoplasia 2002; 4: 291–294.

    Article  CAS  Google Scholar 

  42. Jahid S, Sun J, Edwards RA, Dizon D, Panarelli NC, Milsom JW et al. miR-23a promotes the transition from indolent to invasive colorectal cancer. Cancer Discov 2012; 2: 540–553.

    Article  CAS  Google Scholar 

  43. Li J, Chen Y, Guo X, Zhou L, Jia Z, Tang Y et al. Inhibition of miR-15b decreases cell migration and metastasis in colorectal cancer. Tumour Biol 2016; 37: 8765–8773.

    Article  CAS  Google Scholar 

  44. Wang Y, Liu J, Smith E, Zhou K, Liao J, Yang GY et al. Downregulation of missing in metastasis gene (MIM) is associated with the progression of bladder transitional carcinomas. Cancer Invest 2007; 25: 79–86.

    Article  Google Scholar 

  45. Wu W, Wang Z, Yang P, Yang J, Liang J, Chen Y et al. MicroRNA-135b regulates metastasis suppressor 1 expression and promotes migration and invasion in colorectal cancer. Mol Cell Biochem 2013; 388: 249–259.

    Article  Google Scholar 

  46. Zhou W, Li X, Liu F, Xiao Z, He M, Shen S et al. MiR-135a promotes growth and invasion of colorectal cancer via metastasis suppressor 1 in vitro. Acta Biochim Biophys Sin 2012; 44: 838–846.

    Article  CAS  Google Scholar 

  47. Wang D, Xu MR, Wang T, Li T, Zhu J . MTSS1 overexpression correlates with poor prognosis in colorectal cancer. J Gastrointest Surg 2011; 15: 1205–1212.

    Article  Google Scholar 

  48. Schemionek M, Herrmann O, Reher MM, Chatain N, Schubert C, Costa IG et al. Mtss1 is a critical epigenetically regulated tumor suppressor in CML. Leukemia 2015; 30: 823–832.

    Article  Google Scholar 

  49. Schemionek M, Kharabi Masouleh B, Klaile Y, Krug U, Hebestreit K, Schubert C et al. Identification of the adapter molecule MTSS1 as a potential oncogene-specific tumor suppressor in acute myeloid leukemia. PLoS One 2015; 10: e0125783.

    Article  Google Scholar 

  50. Mertz KD, Pathria G, Wagner C, Saarikangas J, Sboner A, Romanov J et al. MTSS1 is a metastasis driver in a subset of human melanomas. Nat Commun 2014; 5: 3465.

    Article  Google Scholar 

  51. MacGrath SM, Koleske AJ . Cortactin in cell migration and cancer at a glance. J Cell Sci 2012; 125 (Pt 7): 1621–1626.

    Article  CAS  Google Scholar 

  52. Kruchten AE, Krueger EW, Wang Y, McNiven MA . Distinct phospho-forms of cortactin differentially regulate actin polymerization and focal adhesions. Am J Physiol Cell Physiol 2008; 295: C1113–C1122.

    Article  CAS  Google Scholar 

  53. Lin J, Liu J, Wang Y, Zhu J, Zhou K, Smith N et al. Differential regulation of cortactin and N-WASP-mediated actin polymerization by missing in metastasis (MIM) protein. Oncogene 2005; 24: 2059–2066.

    Article  CAS  Google Scholar 

  54. Lua BL, Low BC . Cortactin phosphorylation as a switch for actin cytoskeletal network and cell dynamics control. FEBS Lett 2005; 579: 577–585.

    Article  CAS  Google Scholar 

  55. Chaudhary F, Lucito R, Tonks NK . Missing-in-metastasis regulates cell motility and invasion via PTPdelta-mediated changes in SRC activity. Biochem J 2014; 465: 89–101.

    Article  Google Scholar 

  56. Iliopoulos D, Polytarchou C, Hatziapostolou M, Kottakis F, Maroulakou IG, Struhl K et al. MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci Signal 2009; 2: ra62.

    Article  Google Scholar 

  57. Martin EC, Bratton MR, Zhu Y, Rhodes LV, Tilghman SL, Collins-Burow BM et al. Insulin-like growth factor-1 signaling regulates miRNA expression in MCF-7 breast cancer cell line. PLoS One 2012; 7: e49067.

    Article  CAS  Google Scholar 

  58. O'Day E, Lal A . MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 2010; 12: 201.

    Article  Google Scholar 

  59. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 2006; 1: e116.

    Article  Google Scholar 

  60. Xu M, Mo YY . The Akt-associated microRNAs. Cell Mol Life Sci 2012; 69: 3601–3612.

    Article  CAS  Google Scholar 

  61. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 2009; 106: 3207–3212.

    Article  CAS  Google Scholar 

  62. La Rocca G, Badin M, Shi B, Xu SQ, Deangelis T, Sepp-Lorenzinoi L et al. Mechanism of growth inhibition by MicroRNA 145: the role of the IGF-I receptor signaling pathway. J Cell Physiol 2009; 220: 485–491.

    Article  CAS  Google Scholar 

  63. Valeri N, Braconi C, Gasparini P, Murgia C, Lampis A, Paulus-Hock V et al. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell 2014; 25: 469–483.

    Article  CAS  Google Scholar 

  64. Loberg RD, Neeley CK, Adam-Day LL, Fridman Y St, John LN, Nixdorf S et al. Differential expression analysis of MIM (MTSS1) splice variants and a functional role of MIM in prostate cancer cell biology. Int J Oncol 2005; 26: 1699–1705.

    CAS  PubMed  Google Scholar 

  65. Parr C, Jiang WG . Metastasis suppressor 1 (MTSS1) demonstrates prognostic value and anti-metastatic properties in breast cancer. Eur J Cancer 2009; 45: 1673–1683.

    Article  CAS  Google Scholar 

  66. Summy JM, Gallick GE . Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 2003; 22: 337–358.

    Article  CAS  Google Scholar 

  67. Irby RB, Yeatman TJ . Role of Src expression and activation in human cancer. Oncogene 2000; 19: 5636–5642.

    Article  CAS  Google Scholar 

  68. Furbert-Harris PM, Parish-Gause D, Hunter KA, Vaughn TR, Howland C, Okomo-Awich J et al. Activated eosinophils upregulate the metastasis suppressor molecule E-cadherin on prostate tumor cells. Cell Mol Biol (Noisy-le-grand) 2003; 49: 1009–1016.

    CAS  Google Scholar 

  69. Wang J, Han W, Zborowska E, Liang J, Wang X, Willson JK et al. Reduced expression of transforming growth factor beta type I receptor contributes to the malignancy of human colon carcinoma cells. J Biol Chem 1996; 271: 17366–17371.

    Article  CAS  Google Scholar 

  70. Ye SC, Foster JM, Li W, Liang J, Zborowska E, Venkateswarlu S et al. Contextual effects of transforming growth factor beta on the tumorigenicity of human colon carcinoma cells. Cancer Res 1999; 59: 4725–4731.

    CAS  PubMed  Google Scholar 

  71. Guo XN, Rajput A, Rose R, Hauser J, Beko A, Kuropatwinski K et al. Mutant PIK3CA-bearing colon cancer cells display increased metastasis in an orthotopic model. Cancer Res 2007; 67: 5851–5858.

    Article  CAS  Google Scholar 

  72. Wang J, Yang L, Yang J, Kuropatwinski K, Wang W, Liu XQ et al. Transforming growth factor beta induces apoptosis through repressing the phosphoinositide 3-kinase/AKT/surviving pathway in colon cancer cells. Cancer Res 2008; 68: 3152–3160.

    Article  CAS  Google Scholar 

  73. Agarwal E, Chaudhuri A, Leiphrakpam PD, Haferbier KL, Brattain MG, Chowdhury S . Akt inhibitor MK-2206 promotes anti-tumor activity and cell death by modulation of AIF and Ezrin in colorectal cancer. BMC Cancer 2014; 14: 145.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R01 grants CA038173 and CA054807 to MGB, by DK60632 to JDB and by UNMC Cancer Center Support Grant CA036727. We thank Katie Bailey for assistance with animal surgeries; Dr Adrian Black for critical reading of the manuscript and many helpful discussions, as well as analysis of Oncomine data; Drs Babu Guda and Xiao Peng (Bioinformatics and Systems Biology Core, UNMC) for help with The Cancer Genome Atlas database, and the Confocal Imaging and Histology Cores at UNMC for assistance with tissue processing and microscopy.

Author contributions

Conception and design: Agarwal E, Chowdhury S and Brattain MG; development of methodology: Agarwal E; analysis and interpretation of data: Agarwal E, Chowdhury S, Brattain MG, Wang JJ and Black JD; statistical analysis of TCGA data sets: Smith LM; writing, review and/or revision of the manuscript: Agarwal E, Chowdhury S, Brattain MG, Wang JJ and Black JD; animal surgeries and dissection of animals: Agarwal E and Robb C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J D Black or S Chowdhury.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, E., Robb, C., Smith, L. et al. Role of Akt2 in regulation of metastasis suppressor 1 expression and colorectal cancer metastasis. Oncogene 36, 3104–3118 (2017). https://doi.org/10.1038/onc.2016.460

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.460

This article is cited by

Search

Quick links