Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Increased miR-155-5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death

Subjects

Abstract

Osteosarcoma (OS) is the most common cancer of bone and the 5th leading cause of cancer-related death in young adults. Currently, 5-year survival rates have plateaued at ~70% for patients with localized disease. Those with disseminated disease have an ~20% 5-year survival. An improved understanding of the molecular genetics of OS may yield new approaches to improve outcomes for OS patients. To this end, we applied murine models that replicate human OS to identify and understand dysregulated microRNAs (miRNAs) in OS. miRNA expression patterns were profiled in murine primary osteoblasts, osteoblast cultures and primary OS cell cultures (from primary and paired metastatic locations) isolated from two genetically engineered murine models of OS. The differentially expressed miRNA were further assessed by a cross-species comparison with human osteoblasts and OS cultures. We identified miR-155-5p and miR-148a-3p as deregulated in OS. miR-155-5p suppression or miR-148a-3p overexpression potently reduced proliferation and induced apoptosis in OS cells, yet strikingly, did not impact normal osteoblasts. To define how these miRNAs regulated OS cell fate, we used an integrated computational approach to identify putative candidate targets and then correlated these with the cell biological impact. Although we could not resolve the mechanism through which miR-148a-3p impacts OS, we identified that miR-155-5p overexpression suppressed its target Ripk1 (receptor (TNFRSF)-interacting serine–threonine kinase 1) expression, and miR-155-5p inhibition elevated Ripk1 levels. Ripk1 is directly involved in apoptosis/necroptosis. In OS cells, small interfering RNA against Ripk1 prevented cell death induced by the sequestration of miR-155-5p. Collectively, we show that miR-148a-3p and miR-155-5p are species-conserved deregulated miRNA in OS. Modulation of these miRNAs was specifically toxic to tumor cells but not normal osteoblasts, raising the possibility that these may be tractable targets for miRNA-based therapies for OS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Parkin DM, Stiller CA, Draper GJ, Bieber CA . The international incidence of childhood cancer. Int J Cancer 1988; 42: 511–520.

    Article  CAS  Google Scholar 

  2. Geller DS, Gorlick R . Osteosarcoma: a review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol 2010; 8: 705–718.

    PubMed  Google Scholar 

  3. Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 2002; 20: 776–790.

    Article  Google Scholar 

  4. Mirabello L, Troisi RJ, Savage SA . Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer 2009; 115: 1531–1543.

    Article  Google Scholar 

  5. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  Google Scholar 

  6. Olsen PH, Ambros V . The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 1999; 216: 671–680.

    Article  CAS  Google Scholar 

  7. Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP, Schipani E et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci USA 2008; 105: 1949–1954.

    Article  CAS  Google Scholar 

  8. Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA 2008; 105: 13906–13911.

    Article  CAS  Google Scholar 

  9. Inose H, Ochi H, Kimura A, Fujita K, Xu R, Sato S et al. A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci USA 2009; 106: 20794–20799.

    Article  CAS  Google Scholar 

  10. Jones KB, Salah Z, Del Mare S, Galasso M, Gaudio E, Nuovo GJ et al. miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res 2012; 72: 1865–1877.

    Article  CAS  Google Scholar 

  11. Wu X, Zhong D, Gao Q, Zhai W, Ding Z, Wu J . MicroRNA-34a inhibits human osteosarcoma proliferation by downregulating ether a go-go 1 expression. Int J Med Sci 2013; 10: 676–682.

    Article  CAS  Google Scholar 

  12. Sarver AL, Thayanithy V, Scott MC, Cleton-Jansen AM, Hogendoorn PC, Modiano JF et al. MicroRNAs at the human 14q32 locus have prognostic significance in osteosarcoma. Orphanet J Rare Dis 2013; 8: 7.

    Article  Google Scholar 

  13. Hu H, Zhang Y, Cai XH, Huang JF, Cai L . Changes in microRNA expression in the MG-63 osteosarcoma cell line compared with osteoblasts. Oncol Lett 2012; 4: 1037–1042.

    Article  Google Scholar 

  14. Gougelet A, Pissaloux D, Besse A, Perez J, Duc A, Dutour A et al. Micro-RNA profiles in osteosarcoma as a predictive tool for ifosfamide response. Int J Cancer 2011; 129: 680–690.

    Article  CAS  Google Scholar 

  15. Tang M, Lin L, Cai H, Tang J, Zhou Z . MicroRNA-145 downregulation associates with advanced tumor progression and poor prognosis in patients suffering osteosarcoma. Onco Targets Ther 2013; 6: 833–838.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang J, Gao T, Tang J, Cai H, Lin L, Fu S . Loss of microRNA-132 predicts poor prognosis in patients with primary osteosarcoma. Mol Cell Biochem 2013; 381: 9–15.

    Article  CAS  Google Scholar 

  17. Zhao G, Cai C, Yang T, Qiu X, Liao B, Li W et al. MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma. PLoS One 2013; 8: e53906.

    Article  CAS  Google Scholar 

  18. Yuan J, Ossendorf C, Szatkowski JP, Bronk JT, Maran A, Yaszemski M et al. Osteoblastic and osteolytic human osteosarcomas can be studied with a new xenograft mouse model producing spontaneous metastases. Cancer Invest 2009; 27: 435–442.

    Article  Google Scholar 

  19. Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev 2008; 22: 1662–1676.

    Article  CAS  Google Scholar 

  20. Mutsaers AJ, Ng AJ, Baker EK, Russell MR, Chalk AM, Wall M et al. Modeling distinct osteosarcoma subtypes in vivo using Cre:lox and lineage-restricted transgenic shRNA. Bone 2013; 55: 166–178.

    Article  CAS  Google Scholar 

  21. Allan EH, Ho PW, Umezawa A, Hata J, Makishima F, Gillespie MT et al. Differentiation potential of a mouse bone marrow stromal cell line. J Cell Biochem 2003; 90: 158–169.

    Article  CAS  Google Scholar 

  22. Wang Y, Zhao W, Fu Q . miR-335 suppresses migration and invasion by targeting ROCK1 in osteosarcoma cells. Mol Cell Biochem 2013; 384: 105–111.

    Article  CAS  Google Scholar 

  23. Hanoun N, Delpu Y, Suriawinata AA, Bournet B, Bureau C, Selves J et al. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clin Chem 2010; 56: 1107–1118.

    Article  CAS  Google Scholar 

  24. Sun J, Song Y, Wang Z, Wang G, Gao P, Chen X et al. Clinical significance of promoter region hypermethylation of microRNA-148a in gastrointestinal cancers. Onco Targets Ther 2014; 7: 853–863.

    PubMed  PubMed Central  Google Scholar 

  25. Zhu A, Xia J, Zuo J, Jin S, Zhou H, Yao L et al. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Med Oncol 2012; 29: 2701–2709.

    Article  CAS  Google Scholar 

  26. Dohi O, Yasui K, Gen Y, Takada H, Endo M, Tsuji K et al. Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma. Int J Oncol 2013; 42: 411–418.

    Article  CAS  Google Scholar 

  27. Png KJ, Yoshida M, Zhang XH, Shu W, Lee H, Rimner A et al. MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev 2011; 25: 226–231.

    Article  CAS  Google Scholar 

  28. Dweep H, Sticht C, Pandey P, Gretz N . miRWalk—database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. J Biomed Inform 2011; 44: 839–847.

    Article  CAS  Google Scholar 

  29. Neilsen PM, Noll JE, Mattiske S, Bracken CP, Gregory PA, Schulz RB et al. Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene 2013; 32: 2992–3000.

    Article  CAS  Google Scholar 

  30. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007; 179: 5082–5089.

    Article  CAS  Google Scholar 

  31. Neale G, Su X, Morton CL, Phelps D, Gorlick R, Lock RB et al. Molecular characterization of the pediatric preclinical testing panel. Clin Cancer Res 2008; 14: 4572–4583.

    Article  CAS  Google Scholar 

  32. Kelly AD, Haibe-Kains B, Janeway KA, Hill KE, Howe E, Goldsmith J et al. MicroRNA paraffin-based studies in osteosarcoma reveal reproducible independent prognostic profiles at 14q32. Genome Med 2013; 5: 2.

    Article  CAS  Google Scholar 

  33. Li J, Song Y, Wang Y, Luo J, Yu W . MicroRNA-148a suppresses epithelial-to-mesenchymal transition by targeting ROCK1 in non-small cell lung cancer cells. Mol Cell Biochem 2013; 380: 277–282.

    Article  CAS  Google Scholar 

  34. Zheng B, Liang L, Wang C, Huang S, Cao X, Zha R et al. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer. Clin Cancer Res 2011; 17: 7574–7583.

    Article  CAS  Google Scholar 

  35. Ma W, Zhang X, Chai J, Chen P, Ren P, Gong M . Circulating miR-148a is a significant diagnostic and prognostic biomarker for patients with osteosarcoma. Tumour Biol 2014; 35: 12467–12472.

    Article  CAS  Google Scholar 

  36. Lauvrak SU, Munthe E, Kresse SH, Stratford EW, Namlos HM, Meza-Zepeda LA et al. Functional characterisation of osteosarcoma cell lines and identification of mRNAs and miRNAs associated with aggressive cancer phenotypes. Br J Cancer 2013; 109: 2228–2236.

    Article  CAS  Google Scholar 

  37. Lv H, Guo J, Li S, Jiang D . inhibitor reduces the proliferation and migration in osteosarcoma MG-63 cells. Exp Ther Med 2014; 8: 1575–1580.

    Article  CAS  Google Scholar 

  38. Tam W, Ben-Yehuda D, Hayward WS . bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol Cell Biol 1997; 17: 1490–1502.

    Article  CAS  Google Scholar 

  39. Yen CC, Chen WM, Chen TH, Chen WY, Chen PC, Chiou HJ et al. Identification of chromosomal aberrations associated with disease progression and a novel 3q13.31 deletion involving LSAMP gene in osteosarcoma. Int J Oncol 2009; 35: 775–788.

    CAS  PubMed  Google Scholar 

  40. Batanian JR, Cavalli LR, Aldosari NM, Ma E, Sotelo-Avila C, Ramos MB et al. Evaluation of paediatric osteosarcomas by classic cytogenetic and CGH analyses. Mol Pathol 2002; 55: 389–393.

    Article  CAS  Google Scholar 

  41. Kansara M, Thomas DM . Molecular pathogenesis of osteosarcoma. DNA Cell Biol 2007; 26: 1–18.

    Article  CAS  Google Scholar 

  42. Grimm S, Stanger BZ, Leder P . RIP and FADD: two "death domain"-containing proteins can induce apoptosis by convergent, but dissociable, pathways. Proc Natl Acad Sci USA 1996; 93: 10923–10927.

    Article  CAS  Google Scholar 

  43. Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P . RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ 2007; 14: 400–410.

    Article  CAS  Google Scholar 

  44. Stanger BZ, Leder P, Lee TH, Kim E, Seed B . RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 1995; 81: 513–523.

    Article  CAS  Google Scholar 

  45. Wang L, Du F, Wang X . TNF-alpha induces two distinct caspase-8 activation pathways. Cell 2008; 133: 693–703.

    Article  CAS  Google Scholar 

  46. Kim S, Ohoka N, Okuhira K, Sai K, Nishimaki-Mogami T, Naito M . Modulation of RIP1 ubiquitylation and distribution by MeBS to sensitize cancer cells to tumor necrosis factor alpha-induced apoptosis. Cancer Sci 2010; 101: 2425–2429.

    Article  CAS  Google Scholar 

  47. Ofengeim D, Yuan J . Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 2013; 14: 727–736.

    Article  CAS  Google Scholar 

  48. Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, Van Herreweghe F et al. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ 2012; 19: 2003–2014.

    Article  CAS  Google Scholar 

  49. Zhang M, Harashima N, Moritani T, Huang W, Harada M . The Roles of ROS and Caspases in TRAIL-Induced Apoptosis and Necroptosis in Human Pancreatic Cancer Cells. PLoS One 2015; 10: e0127386.

    Article  Google Scholar 

  50. Dondelinger Y, Jouan-Lanhouet S, Divert T, Theatre E, Bertin J, Gough PJ et al. NF-kappaB-independent role of IKKalpha/IKKbeta in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during tnf signaling. Mol Cell. 2015; 60: 63–76.

    Article  CAS  Google Scholar 

  51. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 2000; 1: 489–495.

    Article  CAS  Google Scholar 

  52. Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 2015; 518: 107–110.

    Article  CAS  Google Scholar 

  53. Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci USA 2012; 109: E1695–E1704.

    Article  CAS  Google Scholar 

  54. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368: 1685–1694.

    Article  CAS  Google Scholar 

  55. Atkins GJ, Bouralexis S, Evdokiou A, Hay S, Labrinidis A, Zannettino AC et al. Human osteoblasts are resistant to Apo2L/TRAIL-mediated apoptosis. Bone 2002; 31: 448–456.

    Article  CAS  Google Scholar 

  56. Houghton PJ, Morton CL, Tucker C, Payne D, Favours E, Cole C et al. The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 2007; 49: 928–940.

    Article  Google Scholar 

  57. Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 2008; 14: 843–853.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A Pfeiffer (University of Bonn) for providing the miR-155-5p sponge, control sponge and miR-155-5p overexpression vector. We thank A Gupte for technical assistance; C Hawkins for discussion and comments; the BioResource Facility (St Vincent’s Hospital) for housing and care of experimental animals, and M Thomson (SVI Flow Cytometry Facility) for help with FACS analysis. This work was supported by grants from the National Health and Medical Research Council (NHMRC), Australia (CW and TJM), Cancer Council of Victoria (CW and EB); Cure Cancer Australia Foundation (EB); 5point foundation (EB); Zig Inge Foundation (CW); NHMRC Career Development Award (CW); NHMRC Dora Lush postgraduate scholarship (SB); in part by the Victorian State Government OIS Program (to St. Vincent’s Institute); CW was the Phillip Desbrow Senior Research Fellow of the Leukaemia Foundation.

Author contributions

SB, CRW, EB, JL, AMC and AJN performed the experiments, analyzed and interpreted data; SB, CRW, EB, JL, TJM and LEP provided the intellectual input and conceptual advice; AZ and JL provided the samples and reagents; SB and CRW wrote the manuscript; all authors reviewed and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C R Walkley.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S., Chalk, A., Ng, A. et al. Increased miR-155-5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death. Oncogene 35, 5282–5294 (2016). https://doi.org/10.1038/onc.2016.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.68

This article is cited by

Search

Quick links