Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The role of barrier genes in epidermal malignancy

Abstract

The outermost layer of the mammalian skin, the epidermis, forms a protective barrier against pathogenic microbes and tissue dehydration. This barrier is formed and maintained by complex genetic networks that connect cellular differentiation processes, enzymatic activities and cellular junctions. Disruption in these networks affects the balance between keratinocyte proliferation and differentiation resulting in barrier function impairment, epidermal hyperproliferation and in some cases, squamous cell carcinoma (SCC). Recent studies in wound-induced inflammation-mediated cancers in mice have identified dysregulation of core barrier components as tumor drivers. We therefore propose a hypothesis in which loss of key barrier genes, induce barrier dysfunction, and promote inflammation-driven epidermal hyperplasia and carcinogenesis over time. This emerging vision suggests that under specific genetic circumstances, localized barrier impairment could be considered as a hallmark of initiating lesions in epidermal SCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Cangkrama M, Ting SB, Darido C . Stem cells behind the barrier. Int J Mol Sci 2013; 14: 13670–13686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Plikus MV, Gay DL, Treffeisen E, Wang A, Supapannachart RJ, Cotsarelis G . Epithelial stem cells and implications for wound repair. Semin Cell Dev Biol 2012; 23: 946–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M et al. Defining the epithelial stem cell niche in skin. Science 2004; 303: 359–363.

    Article  CAS  PubMed  Google Scholar 

  4. Blanpain C, Fuchs E . Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 2006; 22: 339–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abel EL, Angel JM, Kiguchi K, DiGiovanni J . Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat Protoc 2009; 4: 1350–1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schafer M, Werner S . Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 2008; 9: 628–638.

    Article  CAS  PubMed  Google Scholar 

  7. Gordon WM, Zeller MD, Klein RH, Swindell WR, Ho H, Espetia F et al. A GRHL3-regulated repair pathway suppresses immune-mediated epidermal hyperplasia. J Clin Invest 2014; 124: 5205–5218.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Arwert EN, Lal R, Quist S, Rosewell I, van Rooijen N, Watt FM . Tumor formation initiated by nondividing epidermal cells via an inflammatory infiltrate. Proc Natl Acad Sci USA 2010; 107: 19903–19908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jonca N, Leclerc EA, Caubet C, Simon M, Guerrin M, Serre G . Corneodesmosomes and corneodesmosin: from the stratum corneum cohesion to the pathophysiology of genodermatoses. Eur J Dermatol 2011; 21: 35–42.

    Article  CAS  PubMed  Google Scholar 

  10. Leclerc EA, Huchenq A, Mattiuzzo NR, Metzger D, Chambon P, Ghyselinck NB et al. Corneodesmosin gene ablation induces lethal skin-barrier disruption and hair-follicle degeneration related to desmosome dysfunction. J Cell Sci 2009; 122: 2699–2709.

    Article  CAS  PubMed  Google Scholar 

  11. Zuo Y, Zhuang DZ, Han R, Isaac G, Tobin JJ, McKee M et al. ABCA12 maintains the epidermal lipid permeability barrier by facilitating formation of ceramide linoleic esters. J Biol Chem 2008; 283: 36624–36635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Akiyama M . ABCA12 mutations and autosomal recessive congenital ichthyosis: a review of genotype/phenotype correlations and of pathogenetic concepts. Hum Mutat 2010; 31: 1090–1096.

    Article  CAS  PubMed  Google Scholar 

  13. Natsuga K, Akiyama M, Kato N, Sakai K, Sugiyama-Nakagiri Y, Nishimura M et al. Novel ABCA12 mutations identified in two cases of non-bullous congenital ichthyosiform erythroderma associated with multiple skin malignant neoplasia. J Invest Dermatol 2007; 127: 2669–2673.

    Article  CAS  PubMed  Google Scholar 

  14. Hitomi K . Transglutaminases in skin epidermis. Eur J Dermatol 2005; 15: 313–319.

    CAS  PubMed  Google Scholar 

  15. Matsuki M, Yamashita F, Ishida-Yamamoto A, Yamada K, Kinoshita C, Fushiki S et al. Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase). Proc Natl Acad Sci USA 1998; 95: 1044–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishi K, Inoue H, Schnier JB, Rice RH . Cyclin D1 downregulation is important for permanent cell cycle exit and initiation of differentiation induced by anchorage-deprivation in human keratinocytes. J Cell Biochem 2009; 106: 63–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grivennikov SI, Greten FR, Karin M . Immunity, inflammation, and cancer. Cell 2010; 140: 883–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoste E, Arwert EN, Lal R, South AP, Salas-Alanis JC, Murrell DF et al. Innate sensing of microbial products promotes wound-induced skin cancer. Nat Commun 2015; 6: 5932.

    Article  CAS  PubMed  Google Scholar 

  19. Hobbs RM, Watt FM . Regulation of interleukin-1alpha expression by integrins and epidermal growth factor receptor in keratinocytes from a mouse model of inflammatory skin disease. J Biol Chem 2003; 278: 19798–19807.

    Article  CAS  PubMed  Google Scholar 

  20. Xiao M, Wang C, Zhang J, Li Z, Zhao X, Qin Z . IFNgamma promotes papilloma development by up-regulating Th17-associated inflammation. Cancer Res 2009; 69: 2010–2017.

    Article  CAS  PubMed  Google Scholar 

  21. Yang J, Meyer M, Muller AK, Bohm F, Grose R, Dauwalder T et al. Fibroblast growth factor receptors 1 and 2 in keratinocytes control the epidermal barrier and cutaneous homeostasis. J Cell Biol 2010; 188: 935–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meyer M, Muller AK, Yang J, Sulcova J, Werner S . The role of chronic inflammation in cutaneous fibrosis: fibroblast growth factor receptor deficiency in keratinocytes as an example. J Investig Dermatol Symp Proc 2011; 15: 48–52.

    Article  CAS  PubMed  Google Scholar 

  23. Grose R, Fantl V, Werner S, Chioni AM, Jarosz M, Rudling R et al. The role of fibroblast growth factor receptor 2b in skin homeostasis and cancer development. EMBO J 2007; 26: 1268–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Girardi M, Lewis J, Glusac E, Filler RB, Geng L, Hayday AC et al. Resident skin-specific gammadelta T cells provide local, nonredundant regulation of cutaneous inflammation. J Exp Med 2002; 195: 855–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Girardi M, Lewis JM, Filler RB, Hayday AC, Tigelaar RE . Environmentally responsive and reversible regulation of epidermal barrier function by gammadelta T cells. J Invest Dermatol 2006; 126: 808–814.

    Article  CAS  PubMed  Google Scholar 

  26. Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R et al. Regulation of cutaneous malignancy by gammadelta T cells. Science 2001; 294: 605–609.

    Article  CAS  PubMed  Google Scholar 

  27. Arwert EN, Hoste E, Watt FM . Epithelial stem cells, wound healing and cancer. Nat Rev Cancer 2012; 12: 170–180.

    Article  CAS  PubMed  Google Scholar 

  28. Demehri S, Turkoz A, Kopan R . Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. Cancer Cell 2009; 16: 55–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Demehri S, Liu Z, Lee J, Lin MH, Crosby SD, Roberts CJ et al. Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity. PLoS Biol 2008; 6: e123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ambler CA, Watt FM . Adult epidermal Notch activity induces dermal accumulation of T cells and neural crest derivatives through upregulation of jagged 1. Development 2010; 137: 3569–3579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dumortier A, Durham AD, Di Piazza M, Vauclair S, Koch U, Ferrand G et al. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS One 2010; 5: e9258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhong R, Bao R, Faber PW, Bindokas VP, Bechill J, Lingen MW et al. Notch1 activation or loss promotes HPV-induced oral tumorigenesis. Cancer Res 2015; 75: 3958–3969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Di Piazza M, Nowell CS, Koch U, Durham AD, Radtke F . Loss of cutaneous TSLP-dependent immune responses skews the balance of inflammation from tumor protective to tumor promoting. Cancer Cell 2012; 22: 479–493.

    Article  CAS  PubMed  Google Scholar 

  34. Demehri S, Turkoz A, Manivasagam S, Yockey LJ, Turkoz M, Kopan R . Elevated epidermal thymic stromal lymphopoietin levels establish an antitumor environment in the skin. Cancer Cell 2012; 22: 494–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ et al. NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 2003; 421: 639–643.

    Article  CAS  PubMed  Google Scholar 

  36. Mlacki M, Darido C, Jane SM, Wilanowski T . Loss of Grainy head-like 1 is associated with disruption of the epidermal barrier and squamous cell carcinoma of the skin. PLoS One 2014; 9: e89247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Huebner AJ, Dai D, Morasso M, Schmidt EE, Schafer M, Werner S et al. Amniotic fluid activates the nrf2/keap1 pathway to repair an epidermal barrier defect in utero. Dev Cell 2012; 23: 1238–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuramoto N, Takizawa T, Takizawa T, Matsuki M, Morioka H, Robinson JM et al. Development of ichthyosiform skin compensates for defective permeability barrier function in mice lacking transglutaminase 1. J Clin Invest 2002; 109: 243–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lopez-Pajares V, Yan K, Zarnegar BJ, Jameson KL, Khavari PA . Genetic pathways in disorders of epidermal differentiation. Trends Genet 2013; 29: 31–40.

    Article  CAS  PubMed  Google Scholar 

  40. Jensen JM, Schutze S, Neumann C, Proksch E . Impaired cutaneous permeability barrier function, skin hydration, and sphingomyelinase activity in keratin 10 deficient mice. J Invest Dermatol 2000; 115: 708–713.

    Article  CAS  PubMed  Google Scholar 

  41. Santos M, Paramio JM, Bravo A, Ramirez A, Jorcano JL . The expression of keratin k10 in the basal layer of the epidermis inhibits cell proliferation and prevents skin tumorigenesis. J Biol Chem 2002; 277: 19122–19130.

    Article  CAS  PubMed  Google Scholar 

  42. Wikramanayake TC, Stojadinovic O, Tomic-Canic M . Epidermal differentiation in barrier maintenance and wound healing. Adv Wound Care 2014; 3: 272–280.

    Article  Google Scholar 

  43. Gareus R, Huth M, Breiden B, Nenci A, Rosch N, Haase I et al. Normal epidermal differentiation but impaired skin-barrier formation upon keratinocyte-restricted IKK1 ablation. Nat Cell Biol 2007; 9: 461–469.

    Article  CAS  PubMed  Google Scholar 

  44. Liu B, Xia X, Zhu F, Park E, Carbajal S, Kiguchi K et al. IKKalpha is required to maintain skin homeostasis and prevent skin cancer. Cancer Cell 2008; 14: 212–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu F, Park E, Liu B, Xia X, Fischer SM, Hu Y . Critical role of IkappaB kinase alpha in embryonic skin development and skin carcinogenesis. Histol Histopathol 2009; 24: 265–271.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fadloun A, Kobi D, Pointud JC, Indra AK, Teletin M, Bole-Feysot C et al. The TFIID subunit TAF4 regulates keratinocyte proliferation and has cell-autonomous and non-cell-autonomous tumour suppressor activity in mouse epidermis. Development 2007; 134: 2947–2958.

    Article  CAS  PubMed  Google Scholar 

  47. Descargues P, Sil AK, Karin M . IKKalpha, a critical regulator of epidermal differentiation and a suppressor of skin cancer. EMBO J 2008; 27: 2639–2647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Herron BJ, Liddell RA, Parker A, Grant S, Kinne J, Fisher JK et al. A mutation in stratifin is responsible for the repeated epilation (Er) phenotype in mice. Nat Genet 2005; 37: 1210–1212.

    Article  CAS  PubMed  Google Scholar 

  49. Richardson RJ, Dixon J, Malhotra S, Hardman MJ, Knowles L, Boot-Handford RP et al. Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch. Nat Genet 2006; 38: 1329–1334.

    Article  CAS  PubMed  Google Scholar 

  50. Li Q, Sambandam SA, Lu HJ, Thomson A, Kim SH, Lu H et al. 14-3-3sigma and p63 play opposing roles in epidermal tumorigenesis. Carcinogenesis 2011; 32: 1782–1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Restivo G, Nguyen BC, Dziunycz P, Ristorcelli E, Ryan RJ, Ozuysal OY et al. IRF6 is a mediator of Notch pro-differentiation and tumour suppressive function in keratinocytes. EMBO J 2011; 30: 4571–4585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. de la Garza G, Schleiffarth JR, Dunnwald M, Mankad A, Weirather JL, Bonde G et al. Interferon regulatory factor 6 promotes differentiation of the periderm by activating expression of Grainyhead-like 3. J Invest Dermatol 2012; 133: 68–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Clevers H, Nusse R . Wnt/beta-catenin signaling and disease. Cell 2012; 149: 1192–1205.

    Article  CAS  PubMed  Google Scholar 

  54. Darido C, Buchert M, Pannequin J, Bastide P, Zalzali H, Mantamadiotis T et al. Defective claudin-7 regulation by Tcf-4 and Sox-9 disrupts the polarity and increases the tumorigenicity of colorectal cancer cells. Cancer Res 2008; 68: 4258–4268.

    Article  CAS  PubMed  Google Scholar 

  55. Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR et al. E-cadherin/beta-catenin complex and the epithelial barrier. J Biomed Biotechnol 2011; 2011: 567305.

    PubMed  PubMed Central  Google Scholar 

  56. Grigoryan T, Wend P, Klaus A, Birchmeier W . Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 2008; 22: 2308–2341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fehrenschild D, Galli U, Breiden B, Bloch W, Schettina P, Brodesser S et al. TCF/Lef1-mediated control of lipid metabolism regulates skin barrier function. J Invest Dermatol 2012; 132: 337–345.

    Article  CAS  PubMed  Google Scholar 

  58. Cavallaro U, Dejana E . Adhesion molecule signalling: not always a sticky business. Nat Rev Mol Cell Biol 2011; 12: 189–197.

    Article  CAS  PubMed  Google Scholar 

  59. Harris TJ, Tepass U . Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 2010; 11: 502–514.

    Article  CAS  PubMed  Google Scholar 

  60. Tunggal JA, Helfrich I, Schmitz A, Schwarz H, Gunzel D, Fromm M et al. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J 2005; 24: 1146–1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tinkle CL, Pasolli HA, Stokes N, Fuchs E . New insights into cadherin function in epidermal sheet formation and maintenance of tissue integrity. Proc Natl Acad Sci USA 2008; 105: 15405–15410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 2006; 10: 437–449.

    Article  CAS  PubMed  Google Scholar 

  63. Vasiokhin V, Bauer C, Degenstein L, Wise B, Fuchs E . Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell 2001; 104: 605–617.

    Article  Google Scholar 

  64. Kobielak A, Fuchs E . Links between alpha-catenin, NF-kappaB, and squamous cell carcinoma in skin. Proc Natl Acad Sci USA 2006; 103: 2322–2327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Perez-Moreno M, Davis MA, Wong E, Pasolli HA, Reynolds AB, Fuchs E . p120-catenin mediates inflammatory responses in the skin. Cell 2006; 124: 631–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Perez-Moreno M, Song W, Pasolli HA, Williams SE, Fuchs E . Loss of p120 catenin and links to mitotic alterations, inflammation, and skin cancer. Proc Natl Acad Sci USA 2008; 105: 15399–15404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dworkin S, Jane SM, Darido C . The planar cell polarity pathway in vertebrate epidermal development, homeostasis and repair. Organogenesis 2011; 7: 202–208.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Koehler K, Mielke K, Schunck M, Neumann C, Herdegen T, Proksch E . Distinct roles of JNK-1 and ERK-2 isoforms in permeability barrier repair and wound healing. Eur J Cell Biol 2011; 90: 565–571.

    Article  CAS  PubMed  Google Scholar 

  69. She QB, Chen N, Bode AM, Flavell RA, Dong Z . Deficiency of c-Jun-NH(2)-terminal kinase-1 in mice enhances skin tumor development by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 2002; 62: 1343–1348.

    CAS  PubMed  Google Scholar 

  70. Boglev Y, Wilanowski T, Caddy J, Parekh V, Auden A, Darido C et al. The unique and cooperative roles of the Grainy head-like transcription factors in epidermal development reflect unexpected target gene specificity. Dev Biol 2011; 349: 512–522.

    Article  CAS  PubMed  Google Scholar 

  71. Caddy J, Wilanowski T, Darido C, Dworkin S, Ting SB, Zhao Q et al. Epidermal wound repair is regulated by the planar cell polarity signaling pathway. Dev Cell 2010; 19: 138–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Darido C, Jane SM . Grhl3 and GEF19 in the front rho. Small GTPases 2010; 1: 104–107.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Darido C, Jane SM . Golgi feels its own wound. Adv Wound Care 2013; 2: 87–92.

    Article  Google Scholar 

  74. Ting SB, Wilanowski T, Auden A, Hall M, Voss AK, Thomas T et al. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3. Nat Med 2003; 9: 1513–1519.

    Article  CAS  PubMed  Google Scholar 

  75. Ting SB, Caddy J, Hislop N, Wilanowski T, Auden A, Zhao LL et al. A homolog of Drosophila grainy head is essential for epidermal integrity in mice. Science 2005; 308: 411–413.

    Article  CAS  PubMed  Google Scholar 

  76. Yu Z, Lin KK, Bhandari A, Spencer JA, Xu X, Wang N et al. The Grainyhead-like epithelial transactivator Get-1/Grhl3 regulates epidermal terminal differentiation and interacts functionally with LMO4. Dev Biol 2006; 299: 122–136.

    Article  CAS  PubMed  Google Scholar 

  77. Arabzadeh A, Troy TC, Turksen K . Changes in the distribution pattern of Claudin tight junction proteins during the progression of mouse skin tumorigenesis. BMC Cancer 2007; 7: 196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 2002; 156: 1099–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Turksen K, Troy TC . Junctions gone bad: claudins and loss of the barrier in cancer. Biochim Biophys Acta 2011; 1816: 73–79.

    CAS  PubMed  Google Scholar 

  80. Darido C, Georgy SR, Wilanowski T, Dworkin S, Auden A, Zhao Q et al. Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis. Cancer Cell 2011; 20: 635–648.

    Article  CAS  PubMed  Google Scholar 

  81. Georgy SR, Cangkrama M, Srivastava S, Partridge D, Auden A, Dworkin S et al. Identification of a novel proto-oncogenic network in head and neck squamous cell carcinoma. J Natl Cancer Inst 2015; 107: pii: djv152.

  82. Bhandari A, Gordon W, Dizon D, Hopkin AS, Gordon E, Yu Z et al. The Grainyhead transcription factor Grhl3/Get1 suppresses miR-21 expression and tumorigenesis in skin: modulation of the miR-21 target MSH2 by RNA-binding protein DND1. Oncogene 2012; 32: 1497–1507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A . p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999; 398: 708–713.

    Article  CAS  PubMed  Google Scholar 

  84. Koster MI, Kim S, Huang J, Williams T, Roop DR . TAp63alpha induces AP-2 gamma as an early event in epidermal morphogenesis. Dev Biol 2006; 289: 253–261.

    Article  CAS  PubMed  Google Scholar 

  85. Wang X, Pasolli HA, Williams T, Fuchs E . AP-2 factors act in concert with Notch to orchestrate terminal differentiation in skin epidermis. J Cell Biol 2008; 183: 37–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang X, Bolotin D, Chu DH, Polak L, Williams T, Fuchs E . AP-2alpha: a regulator of EGF receptor signaling and proliferation in skin epidermis. J Cell Biol 2006; 172: 409–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Parsa R, Yang A, McKeon F, Green H . Association of p63 with proliferative potential in normal and neoplastic human keratinocytes. J Invest Dermatol 1999; 113: 1099–1105.

    Article  CAS  PubMed  Google Scholar 

  88. Koster MI, Dai D, Marinari B, Sano Y, Costanzo A, Karin M et al. p63 induces key target genes required for epidermal morphogenesis. Proc Natl Acad Sci USA 2007; 104: 3255–3260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Leonard MK, Kommagani R, Payal V, Mayo LD, Shamma HN, Kadakia MP . DeltaNp63alpha regulates keratinocyte proliferation by controlling PTEN expression and localization. Cell Death Differ 2011; 18: 1924–1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sen GL, Boxer LD, Webster DE, Bussat RT, Qu K, Zarnegar BJ et al. ZNF750 is a p63 target gene that induces KLF4 to drive terminal epidermal differentiation. Dev Cell 2012; 22: 669–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Segre JA, Bauer C, Fuchs E . Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet 1999; 22: 356–360.

    Article  CAS  PubMed  Google Scholar 

  92. Li J, Zheng H, Yu F, Yu T, Liu C, Huang S et al. Deficiency of the Kruppel-like factor KLF4 correlates with increased cell proliferation and enhanced skin tumorigenesis. Carcinogenesis 2012; 33: 1239–1246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Jiang YJ, Barish G, Lu B, Evans RM, Crumrine D, Schmuth M et al. PPARdelta activation promotes stratum corneum formation and epidermal permeability barrier development during late gestation. J Invest Dermatol 2010; 130: 511–519.

    Article  CAS  PubMed  Google Scholar 

  94. Man MQ, Barish GD, Schmuth M, Crumrine D, Barak Y, Chang S et al. Deficiency of PPARbeta/delta in the epidermis results in defective cutaneous permeability barrier homeostasis and increased inflammation. J Invest Dermatol 2008; 128: 370–377.

    Article  CAS  PubMed  Google Scholar 

  95. Kim DJ, Akiyama TE, Harman FS, Burns AM, Shan W, Ward JM et al. Peroxisome proliferator-activated receptor beta (delta)-dependent regulation of ubiquitin C expression contributes to attenuation of skin carcinogenesis. J Biol Chem 2004; 279: 23719–23727.

    Article  CAS  PubMed  Google Scholar 

  96. Montagner A, Delgado MB, Tallichet-Blanc C, Chan JS, Sng MK, Mottaz H et al. Src is activated by the nuclear receptor peroxisome proliferator-activated receptor beta/delta in ultraviolet radiation-induced skin cancer. EMBO Mol Med 2014; 6: 80–98.

    Article  CAS  PubMed  Google Scholar 

  97. Tan NS, Michalik L, Noy N, Yasmin R, Pacot C, Heim M et al. Critical roles of PPAR beta/delta in keratinocyte response to inflammation. Genes Dev 2001; 15: 3263–3277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Peters JM, Shah YM, Gonzalez FJ . The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer 2012; 12: 181–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Biniek K, Levi K, Dauskardt RH . Solar UV radiation reduces the barrier function of human skin. Proc Natl Acad Sci USA 2012; 109: 17111–17116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cangkrama M, Darido C, Georgy SR, Partridge D, Auden A, Srivastava S et al. Two ancient gene families are critical for maintenance of the mammalian skin barrier. J Invest Dermatol 2016; e-pub ahead of print 11 March 2016 doi:10.1016/j.jid.2016.02.806.

    Article  CAS  Google Scholar 

  101. Ingraham CR, Kinoshita A, Kondo S, Yang B, Sajan S, Trout KJ et al. Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6). Nat Genet 2006; 38: 1335–1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Stephen Goldie and Dr Sebastian Dworkin for their critical reading of the review. The authors are supported by grants from the Australian National Health and Medical Research Council, the Association for International Cancer Research (to SMJ and CD) and the Victorian Cancer Agency Clare Oliver Memorial Fellowship (to CD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Darido.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darido, C., Georgy, S. & Jane, S. The role of barrier genes in epidermal malignancy. Oncogene 35, 5705–5712 (2016). https://doi.org/10.1038/onc.2016.84

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.84

This article is cited by

Search

Quick links