Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

In vivo overexpression of Emi1 promotes chromosome instability and tumorigenesis

Abstract

Cell cycle genes are often aberrantly expressed in cancer, but how their misexpression drives tumorigenesis mostly remains unclear. From S phase to early mitosis, EMI1 (also known as FBXO5) inhibits the anaphase-promoting complex/cyclosome, which controls cell cycle progression through the sequential degradation of various substrates. By analyzing 7403 human tumor samples, we find that EMI1 overexpression is widespread in solid tumors but not in blood cancers. In solid cancers, EMI1 overexpression is a strong prognostic marker for poor patient outcome. To investigate causality, we generated a transgenic mouse model in which we overexpressed Emi1. Emi1-overexpressing animals develop a wide variety of solid tumors, in particular adenomas and carcinomas with inflammation and lymphocyte infiltration, but not blood cancers. These tumors are significantly larger and more penetrant, abundant, proliferative and metastatic than control tumors. In addition, they are highly aneuploid with tumor cells frequently being in early mitosis and showing mitotic abnormalities, including lagging and incorrectly segregating chromosomes. We further demonstrate in vitro that even though EMI1 overexpression may cause mitotic arrest and cell death, it also promotes chromosome instability (CIN) following delayed chromosome alignment and anaphase onset. In human solid tumors, EMI1 is co-expressed with many markers for CIN and EMI1 overexpression is a stronger marker for CIN than most well-established ones. The fact that Emi1 overexpression promotes CIN and the formation of solid cancers in vivo indicates that Emi1 overexpression actively drives solid tumorigenesis. These novel mechanistic insights have important clinical implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Malumbres M, Barbacid M . Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009; 9: 153–166.

    Article  CAS  Google Scholar 

  2. Teixeira LK, Reed SI . Ubiquitin ligases and cell cycle control. Annu Rev Biochem 2013; 82: 387–414.

    Article  CAS  Google Scholar 

  3. Frye JJ, Brown NG, Petzold G, Watson ER, Grace CR, Nourse A et al. Electron microscopy structure of human APC/C(CDH1)-EMI1 reveals multimodal mechanism of E3 ligase shutdown. Nat Struct Mol Biol 2013; 20: 827–835.

    Article  CAS  Google Scholar 

  4. Wang W, Kirschner MW . Emi1 preferentially inhibits ubiquitin chain elongation by the anaphase-promoting complex. Nat Cell Biol 2013; 15: 797–806.

    Article  CAS  Google Scholar 

  5. Miller JJ, Summers MK, Hansen DV, Nachury MV, Lehman NL, Loktev A et al. Emi1 stably binds and inhibits the anaphase-promoting complex/cyclosome as a pseudosubstrate inhibitor. Genes Dev 2006; 20: 2410–2420.

    Article  CAS  Google Scholar 

  6. Di Fiore B, Pines J . Emi1 is needed to couple DNA replication with mitosis but does not regulate activation of the mitotic APC/C. J Cell Biol 2007; 177: 425–437.

    Article  CAS  Google Scholar 

  7. Perez de Castro I, de Carcer G, Malumbres M . A census of mitotic cancer genes: new insights into tumor cell biology and cancer therapy. Carcinogenesis 2007; 28: 899–912.

    Article  CAS  Google Scholar 

  8. Lehman NL, Tibshirani R, Hsu JY, Natkunam Y, Harris BT, West RB et al. Oncogenic regulators and substrates of the anaphase promoting complex/cyclosome are frequently overexpressed in malignant tumors. Am J Pathol 2007; 170: 1793–1805.

    Article  CAS  Google Scholar 

  9. Holland AJ, Cleveland DW . Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep 2012; 13: 501–514.

    Article  CAS  Google Scholar 

  10. Ricke RM, van Deursen JM . Aneuploidy in health, disease, and aging. J Cell Biol 2013; 201: 11–21.

    Article  CAS  Google Scholar 

  11. Foijer F, Draviam VM, Sorger PK . Studying chromosome instability in the mouse. Biochim Biophys Acta 2008; 1786: 73–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pfau SJ, Amon A . Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep 2012; 13: 515–527.

    Article  CAS  Google Scholar 

  13. Duijf PH, Benezra R . The cancer biology of whole-chromosome instability. Oncogene 2013; 32: 4727–4736.

    Article  CAS  Google Scholar 

  14. Duijf PH, Schultz N, Benezra R . Cancer cells preferentially lose small chromosomes. Int J Cancer 2013; 132: 2316–2326.

    Article  CAS  Google Scholar 

  15. Hsu JY, Reimann JD, Sorensen CS, Lukas J, Jackson PK . E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nat Cell Biol 2002; 4: 358–366.

    Article  CAS  Google Scholar 

  16. Machida YJ, Dutta A . The APC/C inhibitor, Emi1, is essential for prevention of rereplication. Genes Dev 2007; 21: 184–194.

    Article  CAS  Google Scholar 

  17. Neelsen KJ, Zanini IM, Mijic S, Herrador R, Zellweger R, Ray Chaudhuri A et al. Deregulated origin licensing leads to chromosomal breaks by rereplication of a gapped DNA template. Genes Dev 2013; 27: 2537–2542.

    Article  CAS  Google Scholar 

  18. Lee H, Lee DJ, Oh SP, Park HD, Nam HH, Kim JM et al. Mouse emi1 has an essential function in mitotic progression during early embryogenesis. Mol Cell Biol 2006; 26: 5373–5381.

    Article  CAS  Google Scholar 

  19. Robu ME, Zhang Y, Rhodes J . Rereplication in emi1-deficient zebrafish embryos occurs through a Cdh1-mediated pathway. PLoS One 2012; 7: e47658.

    Article  CAS  Google Scholar 

  20. Verschuren EW, Ban KH, Masek MA, Lehman NL, Jackson PK . Loss of Emi1-dependent anaphase-promoting complex/cyclosome inhibition deregulates E2F target expression and elicits DNA damage-induced senescence. Mol Cell Biol 2007; 27: 7955–7965.

    Article  CAS  Google Scholar 

  21. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18 000 cancer gene expression profiles. Neoplasia 2007; 9: 166–180.

    Article  CAS  Google Scholar 

  22. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  Google Scholar 

  23. Harris TJ, McCormick F . The molecular pathology of cancer. Nat Rev Clin Oncol 2010; 7: 251–265.

    Article  CAS  Google Scholar 

  24. Galea MH, Blamey RW, Elston CE, Ellis IO . The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat 1992; 22: 207–219.

    Article  CAS  Google Scholar 

  25. Ravdin PM, Siminoff LA, Davis GJ, Mercer MB, Hewlett J, Gerson N et al. Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J Clin Oncol 2001; 19: 980–991.

    Article  CAS  Google Scholar 

  26. Dexter TJ, Sims D, Mitsopoulos C, Mackay A, Grigoriadis A, Ahmad AS et al. Genomic distance entrained clustering and regression modelling highlights interacting genomic regions contributing to proliferation in breast cancer. BMC Syst Biol 2010; 4: 127.

    Article  Google Scholar 

  27. Kistner A, Gossen M, Zimmermann F, Jerecic J, Ullmer C, Lubbert H et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci USA 1996; 93: 10933–10938.

    Article  CAS  Google Scholar 

  28. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z . A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 2006; 38: 1043–1048.

    Article  CAS  Google Scholar 

  29. Birkbak NJ, Eklund AC, Li Q, McClelland SE, Endesfelder D, Tan P et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res 2011; 71: 3447–3452.

    Article  CAS  Google Scholar 

  30. Swanton C, Nicke B, Schuett M, Eklund AC, Ng C, Li Q et al. Chromosomal instability determines taxane response. Proc Natl Acad Sci USA 2009; 106: 8671–8676.

    Article  CAS  Google Scholar 

  31. Schvartzman JM, Duijf PH, Sotillo R, Coker C, Benezra R . Mad2 Is a Critical Mediator of the Chromosome Instability Observed upon Rb and p53 Pathway Inhibition. Cancer Cell 2011; 19: 701–714.

    Article  CAS  Google Scholar 

  32. Burkhart DL, Sage J . Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 2008; 8: 671–682.

    Article  CAS  Google Scholar 

  33. Malumbres M . Oncogene-induced mitotic stress: p53 and pRb get mad too. Cancer Cell 2011; 19: 691–692.

    Article  CAS  Google Scholar 

  34. Manning AL, Benes C, Dyson NJ . Whole chromosome instability resulting from the synergistic effects of pRB and p53 inactivation. Oncogene 2014; 33: 2487–2494.

    Article  CAS  Google Scholar 

  35. Sotillo R, Schvartzman JM, Socci ND, Benezra R . Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 2010; 464: 436–440.

    Article  CAS  Google Scholar 

  36. Margottin-Goguet F, Hsu JY, Loktev A, Hsieh HM, Reimann JD, Jackson PK . Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev Cell 2003; 4: 813–826.

    Article  CAS  Google Scholar 

  37. Janssen A, Kops GJ, Medema RH . Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc Natl Acad Sci USA 2009; 106: 19108–19113.

    Article  CAS  Google Scholar 

  38. Weaver BA, Cleveland DW . Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res 2007; 67: 10103–10105.

    Article  CAS  Google Scholar 

  39. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–337.

    Article  Google Scholar 

  40. Cancer Genome Atlas N. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Article  Google Scholar 

  41. Cancer Genome Atlas N. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013; 499: 43–49.

    Article  Google Scholar 

  42. Cancer Genome Atlas N Cancer Genome Atlas N Kandoth C Cancer Genome Atlas N Schultz N Cancer Genome Atlas N Cherniack AD Cancer Genome Atlas N Akbani R Cancer Genome Atlas N Liu Y et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013; 497: 67–73.

    Article  Google Scholar 

  43. Cancer Genome Atlas N. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511: 1–7.

    Google Scholar 

  44. Gyorffy B, Surowiak P, Budczies J, Lanczky A . Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 2013; 8: e82241.

    Article  Google Scholar 

  45. Detre S, Saclani Jotti G, Dowsett M . A "quickscore" method for immunohistochemical semiquantitation: validation for oestrogen receptor in breast carcinomas. J Clin Pathol 1995; 48: 876–878.

    Article  CAS  Google Scholar 

  46. Russell PJ, Raghavan D, Gregory P, Philips J, Wills EJ, Jelbart M et al. Bladder cancer xenografts: a model of tumor cell heterogeneity. Cancer Res 1986; 46: 2035–2040.

    CAS  PubMed  Google Scholar 

  47. Cancer Genome Atlas N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068.

    Article  Google Scholar 

  48. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010; 17: 510–522.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Robert Benezra for support, Kym French for animal husbandry, Andrew Brooks for plasmids, Sandrine Roy, Ali Ju, Loredana Spoerri, Yvette Chin and Nicole Chee for technical assistance, Kim-Anh Lê Cao for statistical advice, Marianna Datseris for general support and Pulari Thangavelu and Mehlika Hazar-Rethinam for critically reading the manuscript. This work was supported by IPRS and University of Queensland (UQ) Centennial Scholarships (to SV), grants from UQ Diamantina Institute and UQ and a Career Development Fellowship from the National Breast Cancer Foundation (to PHGD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P H G Duijf.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaidyanathan, S., Cato, K., Tang, L. et al. In vivo overexpression of Emi1 promotes chromosome instability and tumorigenesis. Oncogene 35, 5446–5455 (2016). https://doi.org/10.1038/onc.2016.94

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.94

This article is cited by

Search

Quick links