Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Elevated tumor LDLR expression accelerates LDL cholesterol-mediated breast cancer growth in mouse models of hyperlipidemia

Abstract

Obesity is associated with an increase in cancer-specific mortality in women with breast cancer. Elevated cholesterol, particularly low-density lipoprotein cholesterol (LDL-C), is frequently seen in obese women. Here, we aimed to determine the importance of elevated circulating LDL, and LDL receptor (LDLR) expression in tumor cells, on the growth of breast cancer using mouse models of hyperlipidemia. We describe two novel immunodeficient mouse models of hyperlipidemia (Rag1−//LDLR−/ and Rag1−//ApoE (apolipoprotein E)−/ mice) in addition to established immunocompetent LDLR−/ and ApoE−/ mice. The mice were used to study the effects of elevated LDL-C in human triple-negative (MDA-MB-231) and mouse Her2/Neu-overexpressing (MCNeuA) breast cancers. Tumors derived from MCNeuA and MDA-MB-231 cells had high LDLR expression and formed larger tumors in mice with high circulating LDL-C concentrations than in mice with lower LDL-C. Silencing the LDLR in the tumor cells led to decreased growth of Her2/Neu-overexpressing tumors in LDLR−/ and ApoE−/ mice, with increased Caspase 3 cleavage. Additionally, in vitro, silencing the LDLR led to decreased cell survival in serum-starved conditions, associated with Caspase 3 cleavage. Examining publically available human data sets, we found that high LDLR expression in human breast cancers was associated with decreased recurrence-free survival, particularly in patients treated with systemic therapies. Overall, our results highlight the importance of the LDLR in the growth of triple-negative and HER2-overexpressing breast cancers in the setting of elevated circulating LDL-C, which may be important contributing factors to the increased recurrence and mortality in obese women with breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Demark-Wahnefried W, Platz EA, Ligibel JA, Blair CK, Courneya KS, Meyerhardt JA et al. The role of obesity in cancer survival and recurrence. Cancer Epidemiol Biomarkers Prev 2012; 21: 1244–1259.

    Article  Google Scholar 

  2. Chahil TJ, Ginsberg HN . Diabetic dyslipidemia. Endocrinol Metab Clin North Am 2006; 35: 491–510; vii-viii.

    Article  CAS  Google Scholar 

  3. Alberti KG, Zimmet P, Shaw J . Metabolic syndrome—a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 2006; 23: 469–480.

    Article  CAS  Google Scholar 

  4. Bahl M, Ennis M, Tannock IF, Hux JE, Pritchard KI, Koo J et al. Serum lipids and outcome of early-stage breast cancer: results of a prospective cohort study. Breast Cancer Res Treat 2005; 94: 135–144.

    Article  CAS  Google Scholar 

  5. Rodrigues Dos Santos C, Fonseca I, Dias S, Mendes de Almeida JC . Plasma level of LDL-cholesterol at diagnosis is a predictor factor of breast tumor progression. BMC Cancer 2014; 14: 132.

    Article  Google Scholar 

  6. Mansourian M, Haghjooy-Javanmard S, Eshraghi A, Vaseghi G, Hayatshahi A, Thomas J . Statins use and risk of breast cancer recurrence and death: a systematic review and meta-analysis of observational studies. J Pharmacy Pharmaceut Sci 2016; 19: 72–81.

    Article  Google Scholar 

  7. Kuzu OF, Noory MA, Robertson GP . The role of cholesterol in cancer. Cancer Res 2016; 76: 2063–2070.

    Article  CAS  Google Scholar 

  8. Pelton K, Coticchia CM, Curatolo AS, Schaffner CP, Zurakowski D, Solomon KR et al. Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo. Am J Pathol 2014; 184: 2099–2110.

    Article  CAS  Google Scholar 

  9. Llaverias G, Danilo C, Mercier I, Daumer K, Capozza F, Williams TM et al. Role of cholesterol in the development and progression of breast cancer. Am J Pathol 2011; 178: 402–412.

    Article  CAS  Google Scholar 

  10. Hogarth CA, Roy A, Ebert DL . Genomic evidence for the absence of a functional cholesteryl ester transfer protein gene in mice and rats. Comp Biochem Physiol B Biochem Mol Biol 2003; 135: 219–229.

    Article  Google Scholar 

  11. Yin W, Carballo-Jane E, McLaren DG, Mendoza VH, Gagen K, Geoghagen NS et al. Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia. J Lipid Res 2012; 53: 51–65.

    Article  CAS  Google Scholar 

  12. Alikhani N, Ferguson RD, Novosyadlyy R, Gallagher EJ, Scheinman EJ, Yakar S et al. Mammary tumor growth and pulmonary metastasis are enhanced in a hyperlipidemic mouse model. Oncogene 2013; 32: 961–967.

    Article  CAS  Google Scholar 

  13. Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 2013; 342: 1094–1098.

    Article  CAS  Google Scholar 

  14. Liu J, Xu A, Lam KS, Wong NS, Chen J, Shepherd PR et al. Cholesterol-induced mammary tumorigenesis is enhanced by adiponectin deficiency: role of LDL receptor upregulation. Oncotarget 2013; 4: 1804–1818.

    PubMed  PubMed Central  Google Scholar 

  15. Brown MS, Goldstein JL . Expression of the familial hypercholesterolemia gene in heterozygotes: mechanism for a dominant disorder in man. Science 1974; 185: 61–63.

    Article  CAS  Google Scholar 

  16. Antalis CJ, Uchida A, Buhman KK, Siddiqui RA . Migration of MDA-MB-231 breast cancer cells depends on the availability of exogenous lipids and cholesterol esterification. Clin Exp Metastasis 2011; 28: 733–741.

    Article  CAS  Google Scholar 

  17. Stranzl A, Schmidt H, Winkler R, Kostner GM . Low-density lipoprotein receptor mRNA in human breast cancer cells: influence by PKC modulators. Breast Cancer Res Treat 1997; 42: 195–205.

    Article  CAS  Google Scholar 

  18. Rudling MJ, Stahle L, Peterson CO, Skoog L . Content of low density lipoprotein receptors in breast cancer tissue related to survival of patients. Br Med J 1986; 292: 580–582.

    Article  CAS  Google Scholar 

  19. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE . RAG-1-deficient mice have no mature B and T lymphocytes. Cell 1992; 68: 869–877.

    Article  CAS  Google Scholar 

  20. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 1992; 71: 343–353.

    Article  CAS  Google Scholar 

  21. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J . Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 1993; 92: 883–893.

    Article  CAS  Google Scholar 

  22. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 2009; 15: 921–929.

    Article  CAS  Google Scholar 

  23. Weitman ES, Aschen SZ, Farias-Eisner G, Albano N, Cuzzone DA, Ghanta S et al. Obesity impairs lymphatic fluid transport and dendritic cell migration to lymph nodes. PLoS One 2013; 8: e70703.

    Article  CAS  Google Scholar 

  24. Lamas B, Nachat-Kappes R, Goncalves-Mendes N, Mishellany F, Rossary A, Vasson MP et al. Dietary fat without body weight gain increases in vivo MCF-7 human breast cancer cell growth and decreases natural killer cell cytotoxicity. Mol Carcinog 2015; 54: 58–71.

    Article  CAS  Google Scholar 

  25. Liu X, Huh JY, Gong H, Chamberland JP, Brinkoetter MT, Hamnvik OP et al. Lack of mature lymphocytes results in obese but metabolically healthy mice when fed a high-fat diet. Int J Obes 2015; 39: 1548–1557.

    Article  CAS  Google Scholar 

  26. Szasz AM, Lanczky A, Nagy A, Forster S, Hark K, Green JE et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1065 patients. Oncotarget 2016; 7: 49322–49333.

    Article  Google Scholar 

  27. Goswami CP, Nakshatri H . PROGgene: gene expression based survival analysis web application for multiple cancers. J Clin Bioinformatics 2013; 3: 22.

    Article  Google Scholar 

  28. Chanrion M, Negre V, Fontaine H, Salvetat N, Bibeau F, Mac Grogan G et al. A gene expression signature that can predict the recurrence of tamoxifen-treated primary breast cancer. Clin Cancer Res 2008; 14: 1744–1752.

    Article  CAS  Google Scholar 

  29. Loi S, Haibe-Kains B, Desmedt C, Wirapati P, Lallemand F, Tutt AM et al. Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 2008; 9: 239.

    Article  Google Scholar 

  30. Buffa FM, Camps C, Winchester L, Snell CE, Gee HE, Sheldon H et al. microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res 2011; 71: 5635–5645.

    Article  CAS  Google Scholar 

  31. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q et al. An online survival analysis tool to rapidly assess the effect of 22 277 genes on breast cancer prognosis using microarray data of 1809 patients. Breast Cancer Res Treat 2010; 123: 725–731.

    Article  Google Scholar 

  32. de Gonzalo-Calvo D, Lopez-Vilaro L, Nasarre L, Perez-Olabarria M, Vazquez T, Escuin D et al. Intratumor cholesteryl ester accumulation is associated with human breast cancer proliferation and aggressive potential: a molecular and clinicopathological study. BMC Cancer 2015; 15: 460.

    Article  Google Scholar 

  33. Pires LA, Hegg R, Freitas FR, Tavares ER, Almeida CP, Baracat EC et al. Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer. Braz J Med Biol Res 2012; 45: 557–564.

    Article  CAS  Google Scholar 

  34. Grossmann ME, Nkhata KJ, Mizuno NK, Ray A, Cleary MP . Effects of adiponectin on breast cancer cell growth and signaling. Br J Cancer 2008; 98: 370–379.

    Article  CAS  Google Scholar 

  35. Suarez Y, Fernandez C, Gomez-Coronado D, Ferruelo AJ, Davalos A, Martinez-Botas J et al. Synergistic upregulation of low-density lipoprotein receptor activity by tamoxifen and lovastatin. Cardiovasc Res 2004; 64: 346–355.

    Article  CAS  Google Scholar 

  36. Mulder M, Koopmans G, Wassink G, Al Mansouri G, Simard ML, Havekes LM et al. LDL receptor deficiency results in decreased cell proliferation and presynaptic bouton density in the murine hippocampus. Neurosci Res 2007; 59: 251–256.

    Article  CAS  Google Scholar 

  37. Wang SH, Huang Y, Yuan Y, Xia WQ, Wang P, Huang R . LDL receptor knock-out mice show impaired spatial cognition with hippocampal vulnerability to apoptosis and deficits in synapses. Lipids Health Dis 2014; 13: 175.

    Article  Google Scholar 

  38. Bieghs V, Van Gorp PJ, Wouters K, Hendrikx T, Gijbels MJ, van Bilsen M et al. LDL receptor knock-out mice are a physiological model particularly vulnerable to study the onset of inflammation in non-alcoholic fatty liver disease. PLoS One 2012; 7: e30668.

    Article  CAS  Google Scholar 

  39. Zhao W, Prijic S, Urban BC, Tisza MJ, Zuo Y, Li L et al. Candidate antimetastasis drugs suppress the metastatic capacity of breast cancer cells by reducing membrane fluidity. Cancer Res 2016; 76: 2037–2049.

    Article  CAS  Google Scholar 

  40. Badana A, Chintala M, Varikuti G, Pudi N, Kumari S, Kappala VR et al. Lipid raft integrity is required for survival of triple negative breast cancer cells. J Breast Cancer 2016; 19: 372–384.

    Article  Google Scholar 

  41. Ribas V, Garcia-Ruiz C, Fernandez-Checa JC . Mitochondria, cholesterol and cancer cell metabolism. Clin Transl Med 2016; 5: 22.

    Article  Google Scholar 

  42. Choudhury RP, Rong JX, Trogan E, Elmalem VI, Dansky HM, Breslow JL et al. High-density lipoproteins retard the progression of atherosclerosis and favorably remodel lesions without suppressing indices of inflammation or oxidation. Arterioscl Thromb Vasc Biol 2004; 24: 1904–1909.

    Article  CAS  Google Scholar 

  43. Dansky HM, Charlton SA, Sikes JL, Heath SC, Simantov R, Levin LF et al. Genetic background determines the extent of atherosclerosis in ApoE-deficient mice. Arterioscl Thromb Vasc Biol 1999; 19: 1960–1968.

    Article  CAS  Google Scholar 

  44. Teupser D, Persky AD, Breslow JL . Induction of atherosclerosis by low-fat, semisynthetic diets in LDL receptor-deficient C57BL/6J and FVB/NJ mice: comparison of lesions of the aortic root, brachiocephalic artery, and whole aorta (en face measurement). Arterioscl Thromb Vasc Biol 2003; 23: 1907–1913.

    Article  CAS  Google Scholar 

  45. Zeng X, Sachdev D, Zhang H, Gaillard-Kelly M, Yee D . Sequencing of type I insulin-like growth factor receptor inhibition affects chemotherapy response in vitro and in vivo. Clin Cancer Res 2009; 15: 2840–2849.

    Article  CAS  Google Scholar 

  46. Campbell MJ, Wollish WS, Lobo M, Esserman LJ . Epithelial and fibroblast cell lines derived from a spontaneous mammary carcinoma in a MMTV/neu transgenic mouse. In Vitro Cell Dev Biol Anim 2002; 38: 326–333.

    Article  CAS  Google Scholar 

  47. Lee GY, Kenny PA, Lee EH, Bissell MJ . Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 2007; 4: 359–365.

    Article  CAS  Google Scholar 

  48. Zelenko Z, Gallagher EJ, Tobin-Hess A, Belardi V, Rostoker R, Blank J et al. Silencing vimentin expression decreases pulmonary metastases in a pre-diabetic mouse model of mammary tumor progression. Oncogene 2017; 36: 1394–1403.

    Article  CAS  Google Scholar 

  49. Ferguson RD, Novosyadlyy R, Fierz Y, Alikhani N, Sun H, Yakar S et al. Hyperinsulinemia enhances c-Myc-mediated mammary tumor development and advances metastatic progression to the lung in a mouse model of type 2 diabetes. Breast Cancer Res 2012; 14: R8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research in this study was funded by NCI/NIH K08 CA190779 to EJG, NCI/NIH R01 CA200553 to DLR and Tisch Cancer Institute at Mount Sinai Junior Scientist Award to EJG. We would like to acknowledge the Icahn School of Medicine at Mount Sinai Mouse Genetics and Gene Targeting Core Facility, Translational and Molecular Imaging Core facility and the Biorepository and Pathology Core Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E J Gallagher.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallagher, E., Zelenko, Z., Neel, B. et al. Elevated tumor LDLR expression accelerates LDL cholesterol-mediated breast cancer growth in mouse models of hyperlipidemia. Oncogene 36, 6462–6471 (2017). https://doi.org/10.1038/onc.2017.247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.247

This article is cited by

Search

Quick links