Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fibroblast growth factor 13 regulates glioma cell invasion and is important for bevacizumab-induced glioma invasion

Abstract

Glioblastoma has the poorest prognosis, and is characterized by excessive invasion and angiogenesis. To determine the invasive mechanisms, we previously used two glioma cell lines (J3T-1 and J3T-2) with different invasive phenotypes. The J3T-1 showed abundant angiogenesis and tumor cell invasion around neovasculature, while J3T-2 showed diffuse cell infiltration into surrounding healthy parenchyma. Microarray analyses were used to identify invasion-related genes in J3T-2 cells, and the expressed genes and their intracellular and intratumoral distribution patterns were evaluated in J3T-2 cell lines, human glioma cell lines, human glioblastoma stem cells and human glioblastoma specimens. To determine the role of the invasion-related genes, invasive activities were evaluated in vitro and in vivo. Fibroblast growth factor 13 (FGF13) was overexpressed in J3T-2 cells compared to J3T-1 cells, and in human glioma cell lines, human glioblastoma stem cells and human glioblastoma specimens, when compared to that of normal human astrocytes. Immunohistochemical staining and the RNA-seq (sequencing) data from the IVY Glioblastoma Atlas Project showed FGF13 expression in glioma cells in the invasive edges of tumor specimens. Also, the intracellular distribution was mainly in the cytoplasm of tumor cells and colocalized with tubulin. Overexpression of FGF13 stabilized tubulin dynamics in vitro and knockdown of FGF13 decreased glioma invasion both in vitro and in vivo and prolonged overall survival of several xenograft models. FGF13 was negatively regulated by hypoxic condition. Silencing of FGF13 also decreased in vivo bevacizumab-induced glioma invasion. In conclusion, FGF13 regulated glioma cell invasion and bevacizumab-induced glioma invasion, and could be a novel target for glioma treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987–996.

    Article  CAS  Google Scholar 

  2. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014; 370: 709–722.

    Article  CAS  Google Scholar 

  3. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014; 370: 699–708.

    Article  CAS  Google Scholar 

  4. Piao Y, Liang J, Holmes L, Zurita AJ, Henry V, Heymach JV et al. Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol 2012; 14: 1379–1392.

    Article  CAS  Google Scholar 

  5. Onishi M, Ichikawa T, Kurozumi K, Fujii K, Yoshida K, Inoue S et al. Bimodal anti-glioma mechanisms of cilengitide demonstrated by novel invasive glioma models. Neuropathology 2013; 33: 162–174.

    Article  CAS  Google Scholar 

  6. Ishida J, Onishi M, Kurozumi K, Ichikawa T, Fujii K, Shimazu Y et al. Integrin inhibitor suppresses bevacizumab-induced glioma invasion. Transl Oncol 2014; 7: e1.

    Article  Google Scholar 

  7. Scherer HJ . A critical review: the pathology of cerebral gliomas. J Neurol Psychiatry 1940; 3: 147–177.

    Article  CAS  Google Scholar 

  8. Inoue S, Ichikawa T, Kurozumi K, Maruo T, Onishi M, Yoshida K et al. Novel animal glioma models that separately exhibit two different invasive and angiogenic phenotypes of human glioblastomas. World Neurosurg 2012; 78: 670–682.

    Article  Google Scholar 

  9. Maruo T, Ichikawa T, Kanzaki H, Inoue S, Kurozumi K, Onishi M et al. Proteomics-based analysis of invasion-related proteins in malignant gliomas. Neuropathology 2013; 33: 264–275.

    Article  CAS  Google Scholar 

  10. Onishi M, Ichikawa T, Kurozumi K, Date I . Angiogenesis and invasion in glioma. Brain Tumor Pathol 2011; 28: 13–24.

    Article  CAS  Google Scholar 

  11. Onishi M, Ichikawa T, Kurozumi K, Inoue S, Maruo T, Otani Y et al. Annexin A2 regulates angiogenesis and invasion phenotypes of malignant glioma. Brain Tumor Pathol 2015; 32: 184–194.

    Article  CAS  Google Scholar 

  12. Smallwood PM, Munoz-Sanjuan I, Tong P, Macke JP, Hendry SH, Gilbert DJ et al. Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc Natl Acad Sci USA 1996; 93: 9850–9857.

    Article  CAS  Google Scholar 

  13. Nishimoto S, Nishida E . Fibroblast growth factor 13 is essential for neural differentiation in Xenopus early embryonic development. J Biol Chem 2007; 282: 24255–24261.

    Article  CAS  Google Scholar 

  14. Wu QF, Yang L, Li S, Wang Q, Yuan XB, Gao X et al. Fibroblast growth factor 13 is a microtubule-stabilizing protein regulating neuronal polarization and migration. Cell 2012; 149: 1549–1564.

    Article  CAS  Google Scholar 

  15. Fujimura A, Michiue H, Cheng Y, Uneda A, Tani Y, Nishiki T et al. Cyclin G2 promotes hypoxia-driven local invasion of glioblastoma by orchestrating cytoskeletal dynamics. Neoplasia 2013; 15: 1272–1281.

    Article  CAS  Google Scholar 

  16. Berges R, Balzeau J, Peterson AC, Eyer J . A tubulin binding peptide targets glioma cells disrupting their microtubules, blocking migration, and inducing apoptosis. Mol Ther 2012; 20: 1367–1377.

    Article  CAS  Google Scholar 

  17. Katsetos CD, Reginato MJ, Baas PW, D'Agostino L, Legido A, Tuszyn Ski JA et al. Emerging microtubule targets in glioma therapy. Semin Pediatr Neurol 2015; 22: 49–72.

    Article  Google Scholar 

  18. Wakimoto H, Mohapatra G, Kanai R, Curry WT Jr., Yip S, Nitta M et al. Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells. Neuro Oncol 2012; 14: 132–144.

    Article  CAS  Google Scholar 

  19. DeLay M, Jahangiri A, Carbonell WS, Hu YL, Tsao S, Tom MW et al. Microarray analysis verifies two distinct phenotypes of glioblastomas resistant to antiangiogenic therapy. Clin Cancer Res 2012; 18: 2930–2942.

    Article  CAS  Google Scholar 

  20. Wang F, Yang L, Shi L, Li Q, Zhang G, Wu J et al. Nuclear translocation of fibroblast growth factor-2 (FGF2) is regulated by Karyopherin-beta2 and Ran GTPase in human glioblastoma cells. Oncotarget 2015; 6: 21468–21478.

    PubMed  PubMed Central  Google Scholar 

  21. Okada T, Murata K, Hirose R, Matsuda C, Komatsu T, Ikekita M et al. Upregulated expression of FGF13/FHF2 mediates resistance to platinum drugs in cervical cancer cells. Sci Rep 2013; 3: 2899.

    Article  Google Scholar 

  22. Yu L, Toriseva M, Tuomala M, Seikkula H, Elo T, Tuomela J et al. Increased expression of fibroblast growth factor 13 in prostate cancer is associated with shortened time to biochemical recurrence after radical prostatectomy. Int J Cancer 2016; 139: 140–152.

    Article  CAS  Google Scholar 

  23. Saito N, Fu J, Zheng S, Yao J, Wang S, Liu DD et al. A high Notch pathway activation predicts response to gamma secretase inhibitors in proneural subtype of glioma tumor-initiating cells. Stem Cells 2014; 32: 301–312.

    Article  CAS  Google Scholar 

  24. Fang X, Yoon JG, Li L, Yu W, Shao J, Hua D et al. The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis. BMC Genomics 2011; 12: 11.

    Article  CAS  Google Scholar 

  25. Berezovsky AD, Poisson LM, Cherba D, Webb CP, Transou AD, Lemke NW et al. Sox2 promotes malignancy in glioblastoma by regulating plasticity and astrocytic differentiation. Neoplasia 2014; 16: e19–e25.

    Article  Google Scholar 

  26. Hayashi K, Michiue H, Yamada H, Takata K, Nakayama H, Wei FY et al. Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization. Sci Rep 2016; 6: 23372.

    Article  CAS  Google Scholar 

  27. Fife CM, McCarroll JA, Kavallaris M . Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol 2014; 171: 5507–5523.

    Article  CAS  Google Scholar 

  28. Draberova E, Vinopal S, Morfini G, Liu PS, Sladkova V, Sulimenko T et al. Microtubule-severing ATPase spastin in glioblastoma: increased expression in human glioblastoma cell lines and inverse roles in cell motility and proliferation. J Neuropathol Exp Neurol 2011; 70: 811–826.

    Article  CAS  Google Scholar 

  29. Song Y, Mu L, Han X, Liu X, Fu S . siRNA targeting stathmin inhibits invasion and enhances chemotherapy sensitivity of stem cells derived from glioma cell lines. Acta Biochim Biophys Sin (Shanghai) 2014; 46: 1034–1040.

    Article  CAS  Google Scholar 

  30. Oehler C, Frei K, Rushing EJ, McSheehy PM, Weber D, Allegrini PR et al. Patupilone (epothilone B) for recurrent glioblastoma: clinical outcome and translational analysis of a single-institution phase I/II trial. Oncology 2012; 83: 1–9.

    Article  CAS  Google Scholar 

  31. Barker CA, Bishop AJ, Chang M, Beal K, Chan TA . Valproic acid use during radiation therapy for glioblastoma associated with improved survival. Int J Radiat Oncol Biol Phys 2013; 86: 504–509.

    Article  CAS  Google Scholar 

  32. Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 2015; 314: 2535–2543.

    Article  CAS  Google Scholar 

  33. Nagai S, Moreno O, Smith CA, Ivanchuk S, Romagnuolo R, Golbourn B et al. Role of the cofilin activity cycle in astrocytoma migration and invasion. Genes Cancer 2011; 2: 859–869.

    Article  CAS  Google Scholar 

  34. Wittmack EK, Rush AM, Craner MJ, Goldfarb M, Waxman SG, Dib-Hajj SD . Fibroblast growth factor homologous factor 2B: association with Nav1.6 and selective colocalization at nodes of Ranvier of dorsal root axons. J Neurosci 2004; 24: 6765–6775.

    Article  CAS  Google Scholar 

  35. Ichikawa T, Otani Y, Kurozumi K, Date I . Phenotypic transition as a survival strategy of glioma. Neurol Med Chir (Tokyo) 2016; 56: 387–395.

    Article  Google Scholar 

  36. Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 2012; 22: 21–35.

    Article  CAS  Google Scholar 

  37. Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA 2011; 108: 3749–3754.

    Article  CAS  Google Scholar 

  38. Piao Y, Park SY, Henry V, Smith BD, Tiao N, Flynn DL et al. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models. Neuro Oncol 2016; 18: 1230–1241.

    Article  CAS  Google Scholar 

  39. Hampl JA, Camp SM, Mydlarz WK, Hampl M, Ichikawa T, Chiocca EA et al. Potentiated gene delivery to tumors using herpes simplex virus/Epstein-Barr virus/RV tribrid amplicon vectors. Hum Gene Ther 2003; 14: 611–626.

    Article  CAS  Google Scholar 

  40. Berens ME, Bjotvedt G, Levesque DC, Rief MD, Shapiro JR, Coons SW . Tumorigenic, invasive, karyotypic, and immunocytochemical characteristics of clonal cell lines derived from a spontaneous canine anaplastic astrocytoma. In Vitro Cell Dev Biol Anim 1993; 29a: 310–318.

    Article  CAS  Google Scholar 

  41. Ichikawa T, Hogemann D, Saeki Y, Tyminski E, Terada K, Weissleder R et al. MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia 2002; 4: 523–530.

    Article  CAS  Google Scholar 

  42. Wakimoto H, Kesari S, Farrell CJ, Curry WT Jr., Zaupa C, Aghi M et al. Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res 2009; 69: 3472–3481.

    Article  CAS  Google Scholar 

  43. Huang, da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  CAS  Google Scholar 

  44. Oka T, Kurozumi K, Shimazu Y, Ichikawa T, Ishida J, Otani Y et al. A super gene expression system enhances the anti-glioma effects of adenovirus-mediated REIC/Dkk-3 gene therapy. Sci Rep 2016; 6: 33319.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants-in-aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science, and Technology to TI (No. 22591611 and No. 25462261) and KK (No. 23592125 and No. 26462182). We thank Dr H Wakimoto at Massachusetts General Hospital for providing the human glioblastoma-derived cancer stem cell line.18,42 We thank M Arao and U Ukai in the Department of Neurological Surgery and A Ueda in the Department of Physiology for their technical assistance. The following medical students also contributed to our experiments: K Yamamoto and Y Inoue. The accession number for the gene expression data reported in this paper is GSE88740.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Ichikawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otani, Y., Ichikawa, T., Kurozumi, K. et al. Fibroblast growth factor 13 regulates glioma cell invasion and is important for bevacizumab-induced glioma invasion. Oncogene 37, 777–786 (2018). https://doi.org/10.1038/onc.2017.373

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.373

This article is cited by

Search

Quick links