Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenic effects of evolutionarily conserved noncoding RNA ECONEXIN on gliomagenesis

Abstract

Accumulating studies have demonstrated the importance of long noncoding RNAs (lncRNAs) during oncogenic transformation. However, because most lncRNAs are currently uncharacterized, the identification of novel oncogenic lncRNAs is difficult. Given that intergenic lncRNA have substantially less sequence conservation patterns than protein-coding genes across species, evolutionary conserved intergenic lncRNAs are likely to be functional. The current study identified a novel intergenic lncRNA, LINC00461 (ECONEXIN) using a combined approach consisting of searching lncRNAs by evolutionary conservation and validating their expression in a glioma mouse model. ECONEXIN was the most highly conserved intergenic lncRNA containing 83.0% homology with the mouse ortholog (C130071C03Rik) for a region over 2500 bp in length within its exon 3. Expressions of ECONEXIN and C130071C03Rik were significantly upregulated in both human and mouse glioma tissues. Moreover, the expression of C130071C03Rik was upregulated even in precancerous conditions and markedly increased during glioma progression. Functional analysis of ECONEXIN in glioma cell lines, U87 and U251, showed it was dominantly located in the cytoplasm and interacted with miR-411-5p via two binding sites within ECONEXIN. Inhibition of ECONEXIN upregulated miR-411-5p together with the downregulation of its target, Topoisomerase 2 alpha (TOP2A), in glioma cell lines, resulting in decreased cell proliferation. Our data demonstrated that ECONEXIN is a potential oncogene that regulates TOP2A by sponging miR-411-5p in glioma. In addition, our investigative approaches to identify conserved lncRNA and their molecular characterization by validation in mouse tumor models may be useful to functionally annotate novel lncRNAs, especially cancer-associated lncRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Suzuki H, Aoki K, Chiba K, Sato Y, Shiozawa Y, Shiraishi Y et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 2015; 47: 458–468.

    Article  CAS  Google Scholar 

  2. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 2016; 164: 550–563.

    Article  CAS  Google Scholar 

  3. Wahlestedt C . Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov 2013; 12: 433–446.

    Article  CAS  Google Scholar 

  4. Schmitt AM, Chang HY . Long noncoding RNAs in cancer pathways. Cancer Cell 2016; 29: 452–463.

    Article  CAS  Google Scholar 

  5. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 2011; 477: 295–300.

    Article  CAS  Google Scholar 

  6. Ke J, Yao YL, Zheng J, Wang P, Liu YH, Ma J et al. Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326. Oncotarget 2015; 6: 21934–21949.

    PubMed  PubMed Central  Google Scholar 

  7. Katsushima K, Natsume A, Ohka F, Shinjo K, Hatanaka A, Ichimura N et al. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun 2016; 7: 13616.

    Article  Google Scholar 

  8. Kapranov P, Willingham AT, Gingeras TR . Genome-wide transcription and the implications for genomic organization. Nat Rev Genet 2007; 8: 413–423.

    Article  CAS  Google Scholar 

  9. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009; 458: 223–227.

    Article  CAS  Google Scholar 

  10. Quinn JJ, Zhang QC, Georgiev P, Ilik IA, Akhtar A, Chang HY . Rapid evolutionary turnover underlies conserved lncRNA-genome interactions. Genes Dev 2016; 30: 191–207.

    Article  CAS  Google Scholar 

  11. Washietl S, Kellis M, Garber M . Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Res 2014; 24: 616–628.

    Article  CAS  Google Scholar 

  12. Hezroni H, Koppstein D, Schwartz MG, Avrutin A, Bartel DP, Ulitsky I . Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep 2015; 11: 1110–1122.

    Article  CAS  Google Scholar 

  13. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP . Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 2011; 147: 1537–1550.

    Article  CAS  Google Scholar 

  14. Kutter C, Watt S, Stefflova K, Wilson MD, Goncalves A, Ponting CP et al. Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet 2012; 8: e1002841.

    Article  CAS  Google Scholar 

  15. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011; 25: 1915–1927.

    Article  CAS  Google Scholar 

  16. Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H et al. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 2011; 146: 209–221.

    Article  CAS  Google Scholar 

  17. Lin N, Chang KY, Li Z, Gates K, Rana ZA, Dang J et al. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell 2014; 53: 1005–1019.

    Article  CAS  Google Scholar 

  18. Oliver PL, Chodroff RA, Gosal A, Edwards B, Cheung AF, Gomez-Rodriguez J et al. Disruption of Visc-2, a brain-expressed conserved long noncoding RNA, does not elicit an overt anatomical or behavioral phenotype. Cereb Cortex 2015; 25: 3572–3585.

    Article  Google Scholar 

  19. Tay Y, Rinn J, Pandolfi PP . The multilayered complexity of ceRNA crosstalk and competition. Nature 2014; 505: 344–352.

    Article  CAS  Google Scholar 

  20. Li JH, Liu S, Zhou H, Qu LH, Yang JH . starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014; 42: D92–D97.

    Article  CAS  Google Scholar 

  21. Carthew RW, Sontheimer EJ . Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136: 642–655.

    Article  CAS  Google Scholar 

  22. Ma JB, Ye K, Patel DJ . Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 2004; 429: 318–322.

    Article  CAS  Google Scholar 

  23. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2013; 2: e01749.

    Article  Google Scholar 

  24. Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S . The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci 2007; 120: 2498–2506.

    Article  CAS  Google Scholar 

  25. Mo CF, Wu FC, Tai KY, Chang WC, Chang KW, Kuo HC et al. Loss of non-coding RNA expression from the DLK1-DIO3 imprinted locus correlates with reduced neural differentiation potential in human embryonic stem cell lines. Stem Cell Res Ther 2015; 6: 1.

    Article  Google Scholar 

  26. Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 2010; 29: 3082–3093.

    Article  CAS  Google Scholar 

  27. Moran I, Akerman I, van de Bunt M, Xie R, Benazra M, Nammo T et al. Human beta cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab 2012; 16: 435–448.

    Article  CAS  Google Scholar 

  28. Mathelier A, Fornes O, Arenillas DJ, Chen CY, Denay G, Lee J et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 2016; 44: D110–D115.

    Article  CAS  Google Scholar 

  29. Holmberg J, He X, Peredo I, Orrego A, Hesselager G, Ericsson C et al. Activation of neural and pluripotent stem cell signatures correlates with increased malignancy in human glioma. PLoS ONE 2011; 6: e18454.

    Article  CAS  Google Scholar 

  30. Labreche K, Simeonova I, Kamoun A, Gleize V, Chubb D, Letouze E et al. TCF12 is mutated in anaplastic oligodendroglioma. Nat Commun 2015; 6: 7207.

    Article  CAS  Google Scholar 

  31. Ulitsky I . Evolution to the rescue: using comparative genomics to understand long non-coding RNAs. Nat Rev Genet 2016; 17: 601–614.

    Article  CAS  Google Scholar 

  32. Dweep H, Gretz N . miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 2015; 12: 697.

    Article  CAS  Google Scholar 

  33. Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M . Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 2014; 54: 766–776.

    Article  CAS  Google Scholar 

  34. Pommier Y, Leo E, Zhang H, Marchand C . DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 2010; 17: 421–433.

    Article  CAS  Google Scholar 

  35. Chen T, Sun Y, Ji P, Kopetz S, Zhang W . Topoisomerase IIalpha in chromosome instability and personalized cancer therapy. Oncogene 2015; 34: 4019–4031.

    Article  CAS  Google Scholar 

  36. Leonard A, Wolff JE . Etoposide improves survival in high-grade glioma: a meta-analysis. Anticancer Res 2013; 33: 3307–3315.

    CAS  PubMed  Google Scholar 

  37. Clark PI, Slevin ML, Joel SP, Osborne RJ, Talbot DI, Johnson PW et al. A randomized trial of two etoposide schedules in small-cell lung cancer: the influence of pharmacokinetics on efficacy and toxicity. J Clin Oncol 1994; 12: 1427–1435.

    Article  CAS  Google Scholar 

  38. Mistry AR, Felix CA, Whitmarsh RJ, Mason A, Reiter A, Cassinat B et al. DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med 2005; 352: 1529–1538.

    Article  CAS  Google Scholar 

  39. Yang G, Lu X, Yuan L . LncRNA: a link between RNA and cancer. Biochim Biophys Acta 2014; 1839: 1097–1109.

    Article  CAS  Google Scholar 

  40. Ideue T, Hino K, Kitao S, Yokoi T, Hirose T . Efficient oligonucleotide-mediated degradation of nuclear noncoding RNAs in mammalian cultured cells. RNA 2009; 15: 1578–1587.

    Article  CAS  Google Scholar 

  41. Kim SU . Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 2004; 24: 159–171.

    Article  Google Scholar 

  42. Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L . Mosaic analysis with double markers in mice. Cell 2005; 121: 479–492.

    Article  CAS  Google Scholar 

  43. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012; 22: 1775–1789.

    Article  CAS  Google Scholar 

  44. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S . MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725–2729.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was performed as research programs of the Project for Development of Innovative Research on Cancer Therapeutics (P-Direct), Ministry of Education, Culture, Sports, Science and Technology of Japan (YK), of the Project for Cancer Research And Therapeutic Evolution (P-CREATE) from the Japan Agency for Medical Research and development, AMED (YK), of the PRESTO, JST (YK) and of the Grant-in-Aid for Scientific Research, the Japan Society for the Promotion of Science (25290048, YK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Kondo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deguchi, S., Katsushima, K., Hatanaka, A. et al. Oncogenic effects of evolutionarily conserved noncoding RNA ECONEXIN on gliomagenesis. Oncogene 36, 4629–4640 (2017). https://doi.org/10.1038/onc.2017.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.88

This article is cited by

Search

Quick links