Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Basic Research

EP2 signaling mediates suppressive effects of celecoxib on androgen receptor expression and cell proliferation in prostate cancer

Abstract

Background:

Non-steroidal anti-inflammatory drugs inhibit the activity of cyclooxygenases (COXs), and their usage reduces the risks associated with prostate cancer. Celecoxib is a selective COX-2 inhibitor and reported to prevent the progression of prostate cancer. However, the mechanisms involved remain unclear. In this study, we investigated the suppression of prostate cancer growth by celecoxib and elucidated the biological relevance of the inhibited pathway in prostate cancer cell lines.

Methods:

Western blotting, quantitative real-time PCR and cell proliferation assay were used to resolve the mechanism of celecoxib in prostate cancer cell line PC3, LNCaP and their derivatives.

Results:

Celecoxib induced apoptosis and downregulated EP2, CREB and androgen receptor (AR). Moreover, EP2 antagonist downregulated CREB as well as COX-2 and AR, resulting in the suppression of cell proliferation. Furthermore, EP2 and CREB knockdown induced AR downregulation, indicating that AR suppression by celecoxib is mediated by EP2/CREB signaling.

Conclusions:

Celecoxib exerts antitumor activity through EP2 signaling regulating AR and COX-2 expression. Furthermore, in addition to celecoxib, therapeutics targeting EP2 may also be promising against prostate cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2012. CA: Cancer J Clin 2012; 62: 10–29.

    Google Scholar 

  2. Wolff H, Saukkonen K, Anttila S, Karjalainen A, Vainio H, Ristimaki A . Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res 1998; 58: 4997–5001.

    CAS  PubMed  Google Scholar 

  3. Eberhart CE, Coffey R, Radhika A, Giardiello F, Ferrenbach S, DuBois R . Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994; 107: 1183–1188.

    Article  CAS  PubMed  Google Scholar 

  4. Hwang D, Byrne J, Scollard D, Levine E . Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. J Natl Cancer Inst 1998; 90: 455–460.

    Article  CAS  PubMed  Google Scholar 

  5. Gupta S, Srivastava M, Ahmad N, Bostwick DG, Mukhtar H . Overexpression of cyclooxygenase 2 in human prostate adenocarcinoma. Prostate 2000; 42: 73–78.

    Article  CAS  PubMed  Google Scholar 

  6. Brown JR, DuBois RN . Cyclooxygenase as a target in lung cancer. Clin Cancer Res 2004; 10: 4266–4269.

    Article  Google Scholar 

  7. Brown JR, DuBois RN . COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol 2005; 23: 2840–2855.

    Article  CAS  PubMed  Google Scholar 

  8. Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 2000; 60: 1306–1311.

    CAS  PubMed  Google Scholar 

  9. Iwata C, Kano MR, Komuro A, Oka M, Kiyono K, Johansson E et al. Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via reduction of lymphangiogenesis. Cancer Res 2007; 67: 10181–10189.

    Article  CAS  PubMed  Google Scholar 

  10. O'Byrne K, Dalgleish A . Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer 2001; 85: 473–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Funk CD . Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001; 294: 1871–1875.

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Klein RD . Prostaglandin E2 induces vascular endothelial growth factor secretion in prostate cancer cells through EP2 receptor-mediated cAMP pathway. Mol Carcinog 2007; 46: 912–923.

    Article  CAS  PubMed  Google Scholar 

  13. Jain S, Chakraborty G, Raja R, Kale S, Kundu GC . Prostaglandin E2 regulates tumor angiogenesis in prostate cancer. Cancer Res 2008; 68: 7750–7759.

    Article  CAS  PubMed  Google Scholar 

  14. Fulton AM, Ma X, Kundu N . Targeting prostaglandin E EP receptors to inhibit metastasis. Cancer Res 2006; 66: 9794–9797.

    Article  CAS  PubMed  Google Scholar 

  15. Roberts RO, Jacobson DJ, Girman CJ, Rhodes T, Lieber MM, Jacobsen SJ . A population-based study of daily nonsteroidal anti-inflammatory drug use and prostate cancer. Mayo Clin Proc 2002; 77: 219–225.

    Article  PubMed  Google Scholar 

  16. Nelson J, Harris R . Inverse association of prostate cancer and non-steroidal anti-inflammatory drugs (NSAIDs): results of a case-control study. Oncol Rep 2000; 7: 169–170.

    CAS  PubMed  Google Scholar 

  17. Choe KS, Cowan JE, Chan JM, Carroll PR, D'Amico AV, Liauw SL . Aspirin use and the risk of prostate cancer mortality in men treated with prostatectomy or radiotherapy. J Clin Oncol 2012; 30: 3540–3544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS . The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 2000; 275: 11397–11403.

    Article  CAS  PubMed  Google Scholar 

  19. Lim JTE, Piazza GA, Han EKH, Delohery TM, Li H, Finn TS et al. Sulindac derivatives inhibit growth and induce apoptosis in human prostate cancer cell lines. Biochem Pharmacol 1999; 58: 1097–1107.

    Article  CAS  PubMed  Google Scholar 

  20. Lim JTE, Piazza GA, Pamukcu R, Thompson WJ, Weinstein IB . Exisulind and related compounds inhibit expression and function of the androgen receptor in human prostate cancer cells. Clin Cancer Res 2003; 9: 4972–4982.

    CAS  PubMed  Google Scholar 

  21. Pan Y, Zhang JS, Gazi MH, Young CYF . The cyclooxygenase 2-specific nonsteroidal anti-inflammatory drugs celecoxib and nimesulide inhibit androgen receptor activity via induction of c-Jun in prostate cancer cells. Cancer Epidemiol Biomarkers Prev 2003; 12: 769–774.

    CAS  PubMed  Google Scholar 

  22. Chang SH, Liu CH, Conway R, Han DK, Nithipatikom K, Trifan OC et al. Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci USA 2004; 101: 591–596.

    Article  CAS  PubMed  Google Scholar 

  23. Hussain T, Gupta S, Mukhtar H . Cyclooxygenase-2 and prostate carcinogenesis. Cancer Lett 2003; 191: 125–135.

    Article  CAS  PubMed  Google Scholar 

  24. Shiota M, Yokomizo A, Tada Y, Inokuchi J, Kashiwagi E, Masubuchi D et al. Castration resistance of prostate cancer cells caused by castration-induced oxidative stress through Twist1 and androgen receptor overexpression. Oncogene 2010; 29: 237–250.

    Article  CAS  PubMed  Google Scholar 

  25. Kashiwagi E, Izumi H, Yasuniwa Y, Baba R, Doi Y, Kidani A et al. Enhanced expression of nuclear factor I/B in oxaliplatin‐resistant human cancer cell lines. Cancer Sci 2010; 102: 382–386.

    Article  PubMed  Google Scholar 

  26. Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A et al. Twist promotes tumor cell growth through YB-1 expression. Cancer Res 2008; 68: 98–105.

    Article  CAS  PubMed  Google Scholar 

  27. Shiota M, Izumi H, Tanimoto A, Takahashi M, Miyamoto N, Kashiwagi E et al. Programmed cell death protein 4 down-regulates Y-box binding protein-1 expression via a direct interaction with Twist1 to suppress cancer cell growth. Cancer Res 2009; 69: 3148–3156.

    Article  CAS  PubMed  Google Scholar 

  28. Kashiwagi E, Shiota M, Yokomizo A, Itsumi M, Inokuchi J, Uchiumi T et al. Downregulation of phosphodiesterase 4B (PDE4B) activates protein kinase A and contributes to the progression of prostate cancer. Prostate 2011; 72: 741–751.

    Article  PubMed  Google Scholar 

  29. Shiota M, Yokomizo A, Naito S . Increased androgen receptor transcription: a cause of castration-resistant prostate cancer and a possible therapeutic target. J Mol Endocrinol 2011; 47: 25–41.

    Article  Google Scholar 

  30. Eliopoulos AG, Dumitru CD, Wang CC, Cho J, Tsichlis PN . Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. EMBO J 2002; 21: 4831–4840.

    Article  CAS  PubMed  Google Scholar 

  31. Fujino H, Salvi S, Regan JW . Differential regulation of phosphorylation of the cAMP response element-binding protein after activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. Mol Pharmacol 2005; 68: 251–259.

    CAS  PubMed  Google Scholar 

  32. Rundhaug J, Simper M, Surh I, Fischer S . The role of the EP receptors for prostaglandin E 2 in skin and skin cancer. Cancer Metastasis Rev 2011; 30: 465–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mizokami A, Yeh SY, Chang C . Identification of 3', 5'-cyclic adenosine monophosphate response element and other cis-acting elements in the human androgen receptor gene promoter. Mol Endocrinol 1994; 8: 77–88.

    CAS  PubMed  Google Scholar 

  34. Song S, Guha S, Liu K, Buttar NS, Bresalier RS . COX-2 induction by unconjugated bile acids involves reactive oxygen species-mediated signalling pathways in Barrett's oesophagus and oesophageal adenocarcinoma. Gut 2007; 56: 1512–1521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim J, Jia L, Stallcup M, Coetzee G . The role of protein kinase A pathway and cAMP responsive element-binding protein in androgen receptor-mediated transcription at the prostate-specific antigen locus. J Mol Endocrinol 2005; 34: 107–118.

    Article  CAS  PubMed  Google Scholar 

  36. Ansari KM, Sung YM, He G, Fischer SM . Prostaglandin receptor EP2 is responsible for cyclooxygenase-2 induction by prostaglandin E2 in mouse skin. Carcinogenesis 2007; 28: 2063–2068.

    Article  CAS  PubMed  Google Scholar 

  37. Kashiwagi E, Shiota M, Yokomizo A, Inokuchi J, Itsumi M, Uchiumi T et al. Prostaglandin receptor EP3 mediates growth inhibitory effect of aspirin through androgen receptor and contributes to castration resistance in prostate cancer cells. Endocr Relat Cancer 2013; 20: 431–441.

    Article  CAS  PubMed  Google Scholar 

  38. Katkoori V, Manne K, Vital-Reyes V, Rodríguez-Burford C, Shanmugam C, Sthanam M et al. Selective COX-2 inhibitor (celecoxib) decreases cellular growth in prostate cancer cell lines independent of p53. Biotech Histochem 2013; 88: 38–46.

    Article  CAS  PubMed  Google Scholar 

  39. Patel M, Subbaramaiah K, Du B, Chang M, Yang P, Newman R et al. Celecoxib inhibits prostate cancer growth: evidence of a cyclooxygenase-2-independent mechanism. Clin Cancer Res 2005; 11: 1999–2007.

    Article  CAS  PubMed  Google Scholar 

  40. James ND, Sydes MR, Mason MD, Clarke NW, Anderson J, Dearnaley DP et al. Celecoxib plus hormone therapy versus hormone therapy alone for hormone-sensitive prostate cancer: first results from the STAMPEDE multiarm, multistage, randomised controlled trial. Lancet Oncol 2012; 13: 549–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sung YM, He G, Fischer SM . Lack of expression of the EP2 but not EP3 receptor for prostaglandin E2 results in suppression of skin tumor development. Cancer Res 2005; 65: 9304–9311.

    Article  CAS  PubMed  Google Scholar 

  42. Subbaramaiah K, Hudis C, Chang SH, Hla T, Dannenberg AJ . EP2 and EP4 receptors regulate aromatase expression in human adipocytes and breast cancer cells. J Biol Chem 2008; 283: 3433–3444.

    Article  CAS  PubMed  Google Scholar 

  43. Shin VY, Jin HC, Ng EKO, Cho CH, Leung WK, Sung JJY et al. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone promoted gastric cancer growth through prostaglandin E receptor (EP2 and EP4) in vivo and in vitro. Cancer Sci 2011; 102: 926–933.

    Article  CAS  PubMed  Google Scholar 

  44. Tian M, Schiemann WP . PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-beta signaling during mammary tumorigenesis. FASEB J 2010; 24: 1105–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miyata Y, Kanda S, Maruta S, Matsuo T, Sakai H, Hayashi T et al. Relationship between prostaglandin E< sub> 2</sub> receptors and clinicopathologic features in human prostate cancer tissue. Urology 2006; 68: 1360–1365.

    Article  PubMed  Google Scholar 

  46. Solomon SD, McMurray JJV, Pfeffer MA, Wittes J, Fowler R, Finn P et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 2005; 352: 1071–1080.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Dongchon Kang (Kyushu University, Fukuoka, Japan) for helping with the quantitative real-time PCR experiments, and Noriko Hakoda and Eriko Gunshima for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Yokomizo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Prostate Cancer and Prostatic Diseases website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashiwagi, E., Shiota, M., Yokomizo, A. et al. EP2 signaling mediates suppressive effects of celecoxib on androgen receptor expression and cell proliferation in prostate cancer. Prostate Cancer Prostatic Dis 17, 10–17 (2014). https://doi.org/10.1038/pcan.2013.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2013.53

Keywords

This article is cited by

Search

Quick links