Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent Advances in Pathophysiology and Management of Transient Tachypnea of Newborn

Abstract

Transient tachypnea of newborn (TTN) results from failure of the newborn to effectively clear the fetal lung fluid soon after birth. TTN represents the most common etiology of respiratory distress in term gestation newborns and sometimes requires admission to the neonatal intensive care unit. TTN can lead to maternal-infant separation, the need for respiratory support, extended unnecessary exposure to antibiotics and prolonged hospital stays. Recent evidence also suggests that TTN may be associated with wheezing syndromes later in childhood. New imaging modalities such as lung ultrasound can help in the diagnosis of TTN and early management with distending pressure using continuous positive airway pressure may prevent exacerbation of respiratory distress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration detailing mechanisms of lung fluid secretion and clearance during fetal gestation and after birth.
Fig. 2: Airway liquid retention and role of respiration.
Fig. 3: Risk factors, symptoms and signs, management of transient tachypnea of the newborn and associated childhood respiratory complications.
Fig. 4: Differential diagnosis of transient tachypnea of the newborn with associated roentgenograms.
Fig. 5: X-ray findings of transient tachypnea of the newborn.
Fig. 6: Lung ultrasound as a diagnostic tool for newborn lung pathology.

Similar content being viewed by others

Antoni Torres, Catia Cilloniz, … Tom van der Poll

References

  1. Guglani L, Lakshminrusimha S, Ryan RM. Transient tachypnea of the newborn. Pediatr Rev. 2008;29:e59–65.

    PubMed  Google Scholar 

  2. Jain L. Alveolar fluid clearance in developing lungs and its role in neonatal transition. Clin Perinatol. 1999;26:585–99.

    CAS  PubMed  Google Scholar 

  3. Zanardo V, Simbi AK, Franzoi M, Solda G, Salvadori A, Trevisanuto D. Neonatal respiratory morbidity risk and mode of delivery at term: influence of timing of elective caesarean delivery. Acta Paediatr. 2004;93:643–7.

    CAS  PubMed  Google Scholar 

  4. Lakshminrusimha S, Keszler M. Persistent pulmonary hypertension of the newborn. Neoreviews. 2015;16:e680–e692.

    PubMed  PubMed Central  Google Scholar 

  5. Jost A, Policard A. Contribution experimentale à l'étude du développment prenatal du poumon chez le lapin. Arch Anat Micr. 1948;37:327–32.

    Google Scholar 

  6. Olver RE, Strang LB. Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the foetal lamb. J Physiol. 1974;241:327–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Adams FH, Fujiwara T, Rowshan G. The nature and origin of the fluid in the fetal lamb lung. J Pediatr. 1963;63:881–8.

    CAS  PubMed  Google Scholar 

  8. Joshi S, Kotecha S. Lung growth and development. Early Hum Dev. 2007;83:789–94.

    CAS  PubMed  Google Scholar 

  9. Moessinger AC, Harding R, Adamson TM, Singh M, Kiu GT. Role of lung fluid volume in growth and maturation of the fetal sheep lung. J Clin Investig. 1990;86:1270–7.

    CAS  PubMed  Google Scholar 

  10. Klaus M, Tooley WH, Weaver KH, Clements JA. Lung volume in the newborn infant. Pediatrics. 1962;30:111–6.

    CAS  PubMed  Google Scholar 

  11. Brown MJ, Olver RE, Ramsden CA, Strang LB, Walters DV. Effects of adrenaline and of spontaneous labour on the secretion and absorption of lung liquid in the fetal lamb. J Physiol. 1983;344:137–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vilos GA, Liggins GC. Intrathoracic pressures in fetal sheep. J Dev Physiol. 1982;4:247–56.

    CAS  PubMed  Google Scholar 

  13. Harding R, Bocking AD, Sigger JN. Influence of upper respiratory tract on liquid flow to and from fetal lungs. J Appl Physiol. 1986;61:68–74.

    CAS  PubMed  Google Scholar 

  14. Olver RE, Walters DV, MW S. Developmental regulation of lung liquid transport. Annu Rev Physiol. 2004;66:77–101.

    CAS  PubMed  Google Scholar 

  15. Carlton D. Regulation of liquid secretion and absorption by the fetal and neonatal lung. In: Polin R, Fox W, Abman S, editors. Fetal and neonatal physiology, 4th edn, vol. 1. Philadelphia, PA, USA: Elsevier; 2011, p. 907–19.

  16. Olver RE, Ramsden CA, Strang LB, Walters DV. The role of amiloride-blockable sodium transport in adrenaline-induced lung liquid reabsorption in the fetal lamb. J Physiol. 1986;376:321–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Borgnia M, Nielsen S, Engel A, Agre P. Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem. 1999;68:425–58.

    CAS  PubMed  Google Scholar 

  18. Wittekindt OH, Dietl P. Aquaporins in the lung. Pflug Arch. 2019;471:519–32.

    CAS  Google Scholar 

  19. Li Y, Marcoux MO, Gineste M, Vanpee M, Zelenina M, Casper C. Expression of water and ion transporters in tracheal aspirates from neonates with respiratory distress. Acta Paediatr. 2009;98:1729–37.

    CAS  PubMed  Google Scholar 

  20. te Pas AB, Davis PG, Hooper SB, Morley CJ. From liquid to air: breathing after birth. J Pediatr. 2008;152:607–11.

    Google Scholar 

  21. Bland RD, Hansen TA, Hazinski TA, Haberkern CM, Bressack MA. Studies of lung fluid balance in newborn lambs. Ann N. Y Acad Sci. 1982;384:126–45.

    CAS  PubMed  Google Scholar 

  22. Barker PM, Gatzy JT. Effect of gas composition on liquid secretion by explants of distal lung of fetal rat in submersion culture. Am J Physiol. 1993;265:L512–517.

    CAS  PubMed  Google Scholar 

  23. Weinberger B, Heck DE, Laskin DL, Laskin JD. Nitric oxide in the lung: therapeutic and cellular mechanisms of action. Pharm Ther. 1999;84:401–11.

    CAS  Google Scholar 

  24. Cummings JJ. Nitric oxide decreases lung liquid production in fetal lambs. J Appl Physiol. 1997;83:1538–44.

    CAS  PubMed  Google Scholar 

  25. Isik DU, Bas AY, Demirel N, Kavurt S, Aydemir O, Kavurt AV, et al. Increased asymmetric dimethylarginine levels in severe transient tachypnea of the newborn. J Perinatol. 2016;36:459–62.

    CAS  PubMed  Google Scholar 

  26. Jain L, Eaton DC. Physiology of fetal lung fluid clearance and the effect of labor. Semin Perinatol. 2006;30:34–43.

    PubMed  Google Scholar 

  27. Siew ML, Wallace MJ, Kitchen MJ, Lewis RA, Fouras A, Te Pas AB, et al. Inspiration regulates the rate and temporal pattern of lung liquid clearance and lung aeration at birth. J Appl Physiol. 2009;106:1888–95.

    PubMed  Google Scholar 

  28. Hooper SB, Kitchen MJ, Wallace MJ, Yagi N, Uesugi K, Morgan MJ, et al. Imaging lung aeration and lung liquid clearance at birth. FASEB J. 2007;21:3329–37.

    CAS  PubMed  Google Scholar 

  29. Hooper SB, Te Pas AB, Kitchen MJ. Respiratory transition in the newborn: a three-phase process. Arch Dis Child Fetal Neonatal Ed. 2016;101:F266–271.

    PubMed  Google Scholar 

  30. McGillick EV, Lee K, Yamaoka S, Te Pas AB, Crossley KJ, Wallace MJ, et al. Elevated airway liquid volumes at birth: a potential cause of transient tachypnea of the newborn. J Appl Physiol. 2017;123:1204–13.

    PubMed  Google Scholar 

  31. Miserocchi G, Poskurica BH, Del Fabbro M. Pulmonary interstitial pressure in anesthetized paralyzed newborn rabbits. J Appl Physiol. 1994;77:2260–8.

    CAS  PubMed  Google Scholar 

  32. Miserocchi G, Poskurica BH, del Fabbro M, Crisafulli B. Pulmonary interstitial pressure in premature rabbits. Respir Physiol. 1995;102:239–49.

    CAS  PubMed  Google Scholar 

  33. Vyas H, Field D, Milner AD, Hopkin IE. Determinants of the first inspiratory volume and functional residual capacity at birth. Pediatr Pulmonol. 1986;2:189–93.

    CAS  PubMed  Google Scholar 

  34. te Pas AB, Wong C, Kamlin CO, Dawson JA, Morley CJ, Davis PG. Breathing patterns in preterm and term infants immediately after birth. Pediatr Res. 2009;65:352–6.

    Google Scholar 

  35. Karlberg P, Koch G. Respiratory studies in newborn infants. III. Development of mechanics of breathing during the first week of life. A longitud study . Acta Paediatr. 1962;135:121–9.

    CAS  Google Scholar 

  36. Avery ME, Gatewood OB, Brumley G. Transient tachypnea of newborn. Possible delayed resorption of fluid at birth. Am J Dis Child. 1966;111:380–5.

    CAS  PubMed  Google Scholar 

  37. Ryan CA, Hughes P. Neonatal respiratory morbidity and mode of delivery at term: influence of timing of elective caesarean section. Br J Obstet Gynaecol. 1995;102:843–4.

    CAS  PubMed  Google Scholar 

  38. Kumar A, Bhat BV. Epidemiology of respiratory distress of newborns. Indian J Pediatr. 1996;63:93–98.

    CAS  PubMed  Google Scholar 

  39. Raju TN, Higgins RD, Stark AR, Leveno KJ. Optimizing care and outcome for late-preterm (near-term) infants: a summary of the workshop sponsored by the National Institute of Child Health and Human Development. Pediatrics. 2006;118:1207–14.

    PubMed  Google Scholar 

  40. Hillman NH, Kallapur SG, Jobe AH. Physiology of transition from intrauterine to extrauterine life. Clin Perinatol. 2012;39:769–83.

    PubMed  PubMed Central  Google Scholar 

  41. Dani C, Reali MF, Bertini G, Wiechmann L, Spagnolo A, Tangucci M, et al. Risk factors for the development of respiratory distress syndrome and transient tachypnoea in newborn infants. Italian Group of Neonatal Pneumology. Eur Respir J. 1999;14:155–9.

    CAS  PubMed  Google Scholar 

  42. Gyamfi-Bannerman C, Thom EA, Blackwell SC, Tita AT, Reddy UM, Saade GR, et al. Antenatal betamethasone for women at risk for late preterm delivery. N. Engl J Med. 2016;374:1311–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Stutchfield P, Whitaker R, Russell I. Antenatal Steroids for Term Elective Caesarean Section Research T. Antenatal betamethasone and incidence of neonatal respiratory distress after elective caesarean section: pragmatic randomised trial. BMJ. 2005;331:662.

    PubMed  PubMed Central  Google Scholar 

  44. American College of O, Gynecologists. ACOG committee opinion no. 559: cesarean delivery on maternal request. Obstet Gynecol. 2013;121:904–7.

    Google Scholar 

  45. Tita AT, Landon MB, Spong CY, Lai Y, Leveno KJ, Varner MW, et al. Timing of elective repeat cesarean delivery at term and neonatal outcomes. N Engl J Med. 2009;360:111–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Robinson CJ, Villers MS, Johnson DD, Simpson KN. Timing of elective repeat cesarean delivery at term and neonatal outcomes: a cost analysis. Am J Obstet Gynecol. 2010;202:632 e631–636.

    Google Scholar 

  47. Badran EF, Abdalgani MM, Al-Lawama MA, Al-Ammouri IA, Basha AS, Al Kazaleh FA, et al. Effects of perinatal risk factors on common neonatal respiratory morbidities beyond 36 weeks of gestation. Saudi Med J. 2012;33:1317–23.

    PubMed  Google Scholar 

  48. Cleveland RH. A radiologic update on medical diseases of the newborn chest. Pediatr Radio. 1995;25:631–7.

    CAS  Google Scholar 

  49. Mullowney T, Manson D, Kim R, Stephens D, Shah V, Dell S. Primary ciliary dyskinesia and neonatal respiratory distress. Pediatrics. 2014;134:1160–6.

    PubMed  PubMed Central  Google Scholar 

  50. Liu J, Wang Y, Fu W, Yang CS, Huang JJ. Diagnosis of neonatal transient tachypnea and its differentiation from respiratory distress syndrome using lung ultrasound. Medicine. 2014;93:e197.

    PubMed  PubMed Central  Google Scholar 

  51. Ibrahim M, Omran A, AbdAllah NB, El-Sharkawy S. Lung ultrasound in early diagnosis of neonatal transient tachypnea and its differentiation from other causes of neonatal respiratory distress. J Neonatal Perinat Med. 2018;11:281–7.

    CAS  Google Scholar 

  52. Copetti R, Cattarossi L. The ‘double lung point’: an ultrasound sign diagnostic of transient tachypnea of the newborn. Neonatology. 2007;91:203–9.

    PubMed  Google Scholar 

  53. Sperandeo M, Rea G, Santantonio A, Carnevale V. Lung ultrasonography in diagnosis of transient tachypnea of the newborn: limitations and pitfalls. Chest. 2016;150:977–8.

    PubMed  Google Scholar 

  54. Karabayir N, Kavuncuoglu S. Intravenous frusemide for transient tachypnoea of the newborn: a randomised controlled trial. J Paediatr Child Health. 2006;42:640–2.

    PubMed  Google Scholar 

  55. Wiswell TE, Rawlings JS, Smith FR, Goo ED. Effect of furosemide on the clinical course of transient tachypnea of the newborn. Pediatrics. 1985;75:908–10.

    CAS  PubMed  Google Scholar 

  56. Kassab M, Khriesat WM, Anabrees J. Diuretics for transient tachypnoea of the newborn. Cochrane Database Syst Rev. 2015;11:CD003064.

    Google Scholar 

  57. Armangil D, Yurdakök M, Korkmaz A, Yiğit S, Tekinalp G. Inhaled beta-2 agonist salbutamol for the treatment of transient tachypnea of the newborn. J Pediatr. 2011;159:398–403.e391.

    CAS  PubMed  Google Scholar 

  58. Keles E, Gebesce A, Demirdoven M, Yazgan H, Basturk B, Tonbul A. The effects of inhaled beta-adrenergic agonists in transient tachypnea of the newborn. Glob Pediatr Health. 2016;3:2333794X16645258.

    PubMed  PubMed Central  Google Scholar 

  59. Kim MJ, Yoo JH, Jung JA, Byun SY. The effects of inhaled albuterol in transient tachypnea of the newborn. Allergy Asthma Immunol Res. 2014;6:126–30.

    CAS  PubMed  Google Scholar 

  60. Moresco L, Bruschettini M, Cohen A, Gaiero A, Calevo MG. Salbutamol for transient tachypnea of the newborn. Cochrane Database Syst Rev. 2016;5:CD011878.

    Google Scholar 

  61. Kao B, Stewart de Ramirez SA, Belfort MB, Hansen A. Inhaled epinephrine for the treatment of transient tachypnea of the newborn. J Perinatol. 2008;28:205–10.

    CAS  PubMed  Google Scholar 

  62. Stroustrup A, Trasande L, Holzman IR. Randomized controlled trial of restrictive fluid management in transient tachypnea of the newborn. J Pediatr. 2012;160:38–43.e31.

    PubMed  Google Scholar 

  63. Dehdashtian M, Aramesh MR, Melekian A, Aletayeb MH, Ghaemmaghami A. Restricted versus standard maintenance fluid volume in management of transient tachypnea of newborn: a clinical trial. Iran J Pediatr. 2014;24:575–80.

    PubMed  PubMed Central  Google Scholar 

  64. Santoro W Jr., Martinez FE, Ricco RG, Jorge SM. Colostrum ingested during the first day of life by exclusively breastfed healthy newborn infants. J Pediatr. 2010;156:29–32.

    PubMed  Google Scholar 

  65. Mathew B, D’Angelis CA, Lakshminrusimha S, Nickerson PA, Sokolowski JJ, Kumar VHS, et al. Natriuretic peptide C receptor in the developing sheep lung: role in perinatal transition. Pediatr Res. 2017;82:349–55.

    CAS  PubMed  Google Scholar 

  66. Olivera W, Ridge K, Wood LD, Sznajder JI. ANF decreases active sodium transport and increases alveolar epithelial permeability in rats. J Appl Physiol. 1993;75:1581–6.

    CAS  PubMed  Google Scholar 

  67. Tharaux PL, Dussaule JC, Couette S, Clerici C. Evidence for functional ANP receptors in cultured alveolar type II cells. Am J Physiol. 1998;274:L244–251.

    CAS  PubMed  Google Scholar 

  68. Hein HA, Ely JW, Lofgren MA. Neonatal respiratory distress in the community hospital: when to transport, when to keep. J Fam Pract. 1998;46:284–9.

    CAS  PubMed  Google Scholar 

  69. Morgan MC, Maina B, Waiyego M, Mutinda C, Aluvaala J, Maina M, et al. Oxygen saturation ranges for healthy newborns within 24 h at 1800 m. Arch Dis Child Fetal Neonatal Ed. 2017;102:F266–F268.

    PubMed  PubMed Central  Google Scholar 

  70. Cotten CM. Adverse consequences of neonatal antibiotic exposure. Curr Opin Pediatr. 2016;28:141–9.

    PubMed  PubMed Central  Google Scholar 

  71. Keszler M, Carbone MT, Cox C, Schumacher RE. Severe respiratory failure after elective repeat cesarean delivery: a potentially preventable condition leading to extracorporeal membrane oxygenation. Pediatrics. 1992;89:670–2.

    CAS  PubMed  Google Scholar 

  72. O’Brien J. Absorption atelectasis: incidence and clinical implications. AANA J. 2013;81:205–8.

    PubMed  Google Scholar 

  73. Lakshminrusimha S, Russell JA, Steinhorn RH, Ryan RM, Gugino SF, Morin FC III, et al. Pulmonary arterial contractility in neonatal lambs increases with 100% oxygen resuscitation. Pediatr Res. 2006;59:137–41.

    PubMed  Google Scholar 

  74. Osman AM, El-Farrash RA, Mohammed EH. Early rescue Neopuff for infants with transient tachypnea of newborn: a randomized controlled trial. J Matern Fetal Neonatal Med. 2019;32:597–603.

    PubMed  Google Scholar 

  75. Celebi MY, Alan S, Kahvecioglu D, Cakir U, Yildiz D, Erdeve O, et al. Impact of prophylactic continuous positive airway pressure on transient tachypnea of the newborn and neonatal intensive care admission in newborns delivered by elective cesarean section. Am J Perinatol. 2016;33:99–106.

    PubMed  Google Scholar 

  76. Shohat M, Levy G, Levy I, Schonfeld T, Merlob P. Transient tachypnoea of the newborn and asthma. Arch Dis Child. 1989;64:277–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schaubel D, Johansen H, Dutta M, Desmeules M, Becker A, Mao Y. Neonatal characteristics as risk factors for preschool asthma. J Asthma. 1996;33:255–64.

    CAS  PubMed  Google Scholar 

  78. Smith GC, Wood AM, White IR, Pell JP, Cameron AD, Dobbie R. Neonatal respiratory morbidity at term and the risk of childhood asthma. Arch Dis Child. 2004;89:956–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Birnkrant DJ, Picone C, Markowitz W, El Khwad M, Shen WH, Tafari N. Association of transient tachypnea of the newborn and childhood asthma. Pediatr Pulmonol. 2006;41:978–84.

    PubMed  Google Scholar 

  80. Liem JJ, Huq SI, Ekuma O, Becker AB, Kozyrskyj AL. Transient tachypnea of the newborn may be an early clinical manifestation of wheezing symptoms. J Pediatr. 2007;151:29–33.

    PubMed  Google Scholar 

  81. Cakan M, Nalbantoglu B, Nalbantoglu A, Demirsoy U, Say A. Correlation between transient tachypnea of the newborn and wheezing attack. Pediatr Int. 2011;53:1045–50.

    PubMed  Google Scholar 

  82. Golshantafti M, Yavari T, Afrand M. Risk of wheezing attacks in infants with transient tachypnea newborns. Iran J Pediatr. 2016;26:e2295.

    PubMed  PubMed Central  Google Scholar 

  83. Demissie K, Marcella SW, Breckenridge MB, Rhoads GG. Maternal asthma and transient tachypnea of the newborn. Pediatrics. 1998;102:84–90.

    CAS  PubMed  Google Scholar 

  84. Schatz M, Zeiger RS, Hoffman CP, Saunders BS, Harden KM, Forsythe AB. Increased transient tachypnea of the newborn in infants of asthmatic mothers. Am J Dis Child. 1991;145:156–8.

    CAS  PubMed  Google Scholar 

  85. Mendola P, Mannisto TI, Leishear K, Reddy UM, Chen Z, Laughon SK. Neonatal health of infants born to mothers with asthma. J Allergy Clin Immunol. 2014;133:85–90 e81-84.

    Google Scholar 

  86. Tutdibi E, Hospes B, Landmann E, Gortner L, Satar M, Yurdakok M, et al. Transient tachypnea of the newborn (TTN): a role for polymorphisms of surfactant protein B (SP-B) encoding gene? Klin Padiatr. 2003;215:248–52.

    CAS  PubMed  Google Scholar 

  87. Aslan E, Tutdibi E, Martens S, Han Y, Monz D, Gortner L. Transient tachypnea of the newborn (TTN): a role for polymorphisms in the beta-adrenergic receptor (ADRB) encoding genes? Acta Paediatr. 2008;97:1346–50.

    CAS  PubMed  Google Scholar 

  88. Alter M, Pfab T, Guthmann F, Burdack A, Kempiners N, Kalk P, et al. Maternal and fetal PROGINS progesterone receptor polymorphism reduces the risk for transient tachypnea of the newborn. Clin Lab. 2010;56:559–67.

    PubMed  Google Scholar 

  89. Satar M, Taskin E, Ozlu F, Tuli A, Ozcan K, Yildizdas HY. Polymorphism of the angiotensin-converting enzyme gene and angiotensin-converting enzyme activity in transient tachypnea of neonate and respiratory distress syndrome. J Matern Fetal Neonatal Med. 2012;25:1712–5.

    CAS  PubMed  Google Scholar 

  90. Oztekin O, Akyol M, Kalay S, Tezel G, Akcakus M, Oygur N. Investigation of the serum glucocorticoid kinase 1 gene in patients with transient tachypnea of the newborn. J Matern Fetal Neonatal Med. 2013;26:990–4.

    CAS  PubMed  Google Scholar 

  91. Toraih EA, Hussein MH, Ibrahim A, AbdAllah NB, Mohammad E, Kishk AM, et al. Beta2-adrenergic receptor variants in children and adolescents with bronchial asthma. Front Biosci (Elite Ed). 2019;11:61–78.

    Google Scholar 

  92. Cagliani R, Fumagalli M, Pozzoli U, Riva S, Comi GP, Torri F, et al. Diverse evolutionary histories for beta-adrenoreceptor genes in humans. Am J Hum Genet. 2009;85:64–75.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J.L. Ruoss, MD, I. Prelipcean, MD and D. Rajdekar from the University of Florida for their contribution of Fig. 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziad Alhassen.

Ethics declarations

Conflict of interest

PV is supported by NIH grant (1R03HD09299-01). SL is supported by NIH grant (5R01HD072929-08). ZA, LG, and RMR have no financial relationships to disclose relevant to this article. This commentary does not contain a discussion of an unapproved/investigative use of a commercial product/device. The use of antenatal betamethasone, diuretics and beta-agonists are not approved by the FDA in the prevention or treatment of TTN.

Content specifications

Understand the pathophysiology that underlines Transient Tachypnea of Newborn (TTN). Recognize the clinical manifestations of TTN and the imaging modalities that may help in the diagnosis of TTN. Understand the benefits in providing Continuous Positive Airway Pressure (CPAP) for TTN. Recognize the possible long-term association of TTN with wheezing-related syndromes.

Education gap

It can be challenging to diagnose TTN and identify patients who may be at greatest risk of respiratory deterioration. Optimal management has not been established, and caring for patients with TTN, particularly at community hospitals, can be difficult. Increasing knowledge of the pathophysiology leads to improved therapeutic options.

Objectives

Define the molecular mechanisms involved in lung fluid clearance. Identify the clinical symptoms and signs, radiologic findings and risk factors associated with TTN. List the differential diagnosis of TTN. Explain the different treatment options for TTN.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhassen, Z., Vali, P., Guglani, L. et al. Recent Advances in Pathophysiology and Management of Transient Tachypnea of Newborn. J Perinatol 41, 6–16 (2021). https://doi.org/10.1038/s41372-020-0757-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-020-0757-3

This article is cited by

Search

Quick links