Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic myeloproliferative neoplasms

Risk of infections in patients with myeloproliferative neoplasms—a population-based cohort study of 8363 patients

Abstract

Infections are a common complication in patients with many hematologic malignancies, however, whether patients with myeloproliferative neoplasms (MPN) also are at an increased risk of infections is largely unknown. To assess the risk of serious infections, we performed a large population-based matched cohort study in Sweden including 8 363 MPN patients and 32,405 controls using high-quality registers between the years 1992–2013 with follow-up until 2015. The hazard ratio (HR) of any infection was 2.0 (95% confidence interval 1.9–2.0), of bacterial infections 1.9 (1.8–2.0), and of viral infections 2.1 (1.9–2.3). One of the largest risk increases was that of sepsis, HR 2.6 (2.4–2.9). The HR of any infection was highest in primary myelofibrosis 3.7 (3.2–4.1), and significantly elevated in all MPN subtypes; 1.7 (1.6–1.8) in polycythemia vera and 1.7 (1.5–1.8) in essential thrombocythemia. There was no significant difference in risk of infections between untreated patients and patients treated with hydroxyurea or interferon-α during the years 2006–2013. These novel findings of an overall increased risk of infections in MPN patients, irrespective of common cytoreductive treatments, suggest the increased risk of infection is inherent to the MPN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cumulative incidense of infection.
Fig. 2: Hazard ratio of infection over time from MPN diagnosis.

Similar content being viewed by others

References

  1. Blimark C, Holmberg E, Mellqvist UH, Landgren O, Bjorkholm M, Hultcrantz M, et al. Multiple myeloma and infections: a population-based study on 9253 multiple myeloma patients. Haematologica. 2015;100:107–13.

    PubMed  PubMed Central  Google Scholar 

  2. Safdar A, Armstrong D. Infections in patients with hematologic neoplasms and hematopoietic stem cell transplantation: neutropenia, humoral, and splenic defects. Clin Infect Dis. 2011;53:798–806.

    PubMed  Google Scholar 

  3. Goldberg SL, Chen E, Corral M, Guo A, Mody-Patel N, Pecora AL, et al. Incidence and clinical complications of myelodysplastic syndromes among United States Medicare beneficiaries. J Clin Oncol. 2010;28:2847–52.

    PubMed  Google Scholar 

  4. Barbui T, Thiele J, Gisslinger H, Finazzi G, Vannucchi AM, Tefferi A. The 2016 revision of WHO classification of myeloproliferative neoplasms: clinical and molecular advances. Blood Rev. 2016;30:453–9.

    CAS  PubMed  Google Scholar 

  5. Hultcrantz M, Ravn Landtblom A, Andreasson B, Samuelsson J, Dickman PW, Kristinsson SY, et al. Incidence of myeloproliferative neoplasms—trends by subgroup and age in a population-based study in Sweden. J Intern Med. 2020;287:448–54.

    CAS  PubMed  Google Scholar 

  6. Bjorkholm M, Hultcrantz M, Derolf AR. Leukemic transformation in myeloproliferative neoplasms: therapy-related or unrelated? Best Pr Res Clin Haematol. 2014;27:141–53.

    Google Scholar 

  7. Hultcrantz M, Bjorkholm M, Landgren O, Kristinsson SY, Andersson TML. Risk for arterial and venous thrombosis in patients with myeloproliferative neoplasms. Ann Intern Med. 2018;169:268.

    PubMed  Google Scholar 

  8. Hultcrantz M, Kristinsson SY, Andersson TM, Landgren O, Eloranta S, Derolf AR, et al. Patterns of survival among patients with myeloproliferative neoplasms diagnosed in Sweden from 1973 to 2008: a population-based study. J Clin Oncol. 2012;30:2995–3001.

    PubMed  PubMed Central  Google Scholar 

  9. Landtblom AR, Bower H, Andersson TM, Dickman PW, Samuelsson J, Bjorkholm M, et al. Second malignancies in patients with myeloproliferative neoplasms: a population-based cohort study of 9379 patients. Leukemia. 2018;32:2203–10.

    PubMed  PubMed Central  Google Scholar 

  10. Polverelli N, Palumbo GA, Binotto G, Abruzzese E, Benevolo G, Bergamaschi M, et al. Epidemiology, outcome, and risk factors for infectious complications in myelofibrosis patients receiving ruxolitinib: A multicenter study on 446 patients. Hematol Oncol. 2018. https://onlinelibrary.wiley.com/doi/epdf/10.1002/hon.2509.

  11. Polverelli N, Breccia M, Benevolo G, Martino B, Tieghi A, Latagliata R, et al. Risk factors for infections in myelofibrosis: role of disease status and treatment. A multicenter study of 507 patients. Am J Hematol. 2017;92:37–41.

    CAS  PubMed  Google Scholar 

  12. Manduzio P. Ruxolitinib in myelofibrosis: to be or not to be an immune disruptor. Ther Clin Risk Manag. 2017;13:169–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lescuyer S, Ledoux MP, Gravier S, Natarajan-Ame S, Duval C, Maloisel F, et al. Tuberculosis and atypical mycobacterial infections in ruxolitinib-treated patients with primary or secondary myelofibrosis or polycythemia vera. Int J Infect Dis. 2019;80:134–6.

    CAS  PubMed  Google Scholar 

  14. Hirano A, Yamasaki M, Saito N, Iwato K, Daido W, Funaishi K, et al. Pulmonary cryptococcosis in a ruxolitinib-treated patient with primary myelofibrosis. Respir Med Case Rep. 2017;22:87–90.

    PubMed  PubMed Central  Google Scholar 

  15. Sylvine P, Thomas S, Pirayeh E. French network of regional pharmacovigilance C. Infections associated with ruxolitinib: study in the French Pharmacovigilance database. Ann Hematol. 2018;97:913–4.

    PubMed  Google Scholar 

  16. Hultcrantz M, Wilkes SR, Kristinsson SY, Andersson TM, Derolf AR, Eloranta S, et al. Risk and cause of death in patients diagnosed with myeloproliferative neoplasms in Sweden Between 1973 and 2005: A population-based study. J Clin Oncol. 2015;33:2288–95.

    PubMed  Google Scholar 

  17. Ludvigsson JF, Otterblad-Olausson P, Pettersson BU, Ekbom A. The Swedish personal identity number: possibilities and pitfalls in healthcare and medical research. Eur J Epidemiol. 2009;24:659–67.

    PubMed  PubMed Central  Google Scholar 

  18. Turesson I, Linet MS, Bjorkholm M, Kristinsson SY, Goldin LR, Caporaso NE, et al. Ascertainment and diagnostic accuracy for hematopoietic lymphoproliferative malignancies in Sweden 1964-2003. Int J Cancer. 2007;121:2260–6.

    CAS  PubMed  Google Scholar 

  19. Barlow L, Westergren K, Holmberg L, Talback M. The completeness of the Swedish Cancer Register: a sample survey for year 1998. Acta Oncologica. 2009;48:27–33.

    PubMed  Google Scholar 

  20. Socialstyrelsen. Cancer incidence in Sweden 2014. www.socialstyrelsen.se; 2015 2014-12-26.

  21. Berlin NI. Diagnosis and classification of the polycythemias. Semin Hematol. 1975;12:339–51.

    CAS  PubMed  Google Scholar 

  22. Swerdlow SH, International Agency for Research on Cancer, World Health Organization. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: International Agency for Research on Cancer; 2008. 439 p. p.

  23. Jaffe ES, World Health Organization. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon Oxford: IARC Press; Oxford University Press (distributor); 2001. 351.

  24. Socialstyrelsen. Dödsorsaksstatistik - Historik, produktionsmetoder och tillförlitlighet. In: Socialstyrelsen, editor. 2010.

  25. Brooke HL, Talback M, Hornblad J, Johansson LA, Ludvigsson JF, Druid H, et al. The Swedish cause of death register. Eur J Epidemiol. 2017;32:765–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ludvigsson JF, Andersson E, Ekbom A, Feychting M, Kim JL, Reuterwall C, et al. External review and validation of the Swedish national inpatient register. BMC Public Health. 2011;11:450.

    PubMed  PubMed Central  Google Scholar 

  27. Wettermark B, Hammar N, Fored CM, Leimanis A, Otterblad Olausson P, Bergman U, et al. The new Swedish Prescribed Drug Register–opportunities for pharmacoepidemiological research and experience from the first six months. Pharmacoepidemiol Drug Saf. 2007;16:726–35.

    PubMed  Google Scholar 

  28. Ludvigsson JF, Almqvist C, Bonamy AK, Ljung R, Michaelsson K, Neovius M, et al. Registers of the Swedish total population and their use in medical research. Eur J Epidemiol. 2016;31:125–36.

    PubMed  Google Scholar 

  29. Mendez Luque LF, Blackmon AL, Ramanathan G, Fleischman AG. Key role of inflammation in myeloproliferative neoplasms: instigator of disease initiation, progression. and symptoms. Curr Hematologic Malignancy Rep. 2019;14:145–53.

    Google Scholar 

  30. Barosi G. An immune dysregulation in MPN. Curr Hematologic Malignancy Rep. 2014;9:331–9.

    Google Scholar 

  31. Sorensen AL, Bjorn ME, Riley CH, Holmstrom M, Andersen MH, Svane IM, et al. B-cell frequencies and immunoregulatory phenotypes in myeloproliferative neoplasms: influence of ruxolitinib, interferon-alpha2, or combination treatment. Eur J Haematol. 2019;103:351–61.

    CAS  PubMed  Google Scholar 

  32. Larsen TS, Christensen JH, Hasselbalch HC, Pallisgaard N. The JAK2 V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br J Haematol. 2007;136:745–51.

    CAS  PubMed  Google Scholar 

  33. Kjaer L, Holmstrom MO, Cordua S, Andersen MH, Svane IM, Thomassen M, et al. Sorted peripheral blood cells identify CALR mutations in B- and T-lymphocytes. Leuk Lymphoma. 2018;59:973–7.

    CAS  PubMed  Google Scholar 

  34. Pardanani A, Lasho TL, Finke C, Mesa RA, Hogan WJ, Ketterling RP, et al. Extending Jak2V617F and MplW515 mutation analysis to single hematopoietic colonies and B and T lymphocytes. Stem Cells. 2007;25:2358–62.

    CAS  PubMed  Google Scholar 

  35. Romano M, Sollazzo D, Trabanelli S, Barone M, Polverelli N, Perricone M, et al. Mutations in JAK2 and Calreticulin genes are associated with specific alterations of the immune system in myelofibrosis. Oncoimmunology. 2017;6:e1345402.

    PubMed  PubMed Central  Google Scholar 

  36. Hultcrantz M, Bjorkholm M, Dickman PW, Landgren O, Derolf AR, Kristinsson SY, et al. Risk for arterial and venous thrombosis in patients with myeloproliferative neoplasms: a population-based cohort study. Ann Intern Med. 2018;168:317–25.

    PubMed  PubMed Central  Google Scholar 

  37. Kristinsson SY, Landgren O, Samuelsson J, Bjorkholm M, Goldin LR. Autoimmunity and the risk of myeloproliferative neoplasms. Haematologica. 2010;95:1216–20.

    PubMed  PubMed Central  Google Scholar 

  38. Nordic care program for patients with Essential Thrombocythemia, Polycythemia Vera and Primary Myelofibrosis http://nmpn.org/index.php/guidelines/17-nmpn-care-program-2017/file: Nordic MPN Study Group; 2017. http://nmpn.org/index.php/guidelines/17-nmpn-care-program-2017/file.

  39. Andreasson B, Lofvenberg E, Westin J. Management of patients with polycythaemia vera: results of a survey among Swedish haematologists. Eur J Haematol. 2005;74:489–95.

    PubMed  Google Scholar 

  40. Lussana F, Cattaneo M, Rambaldi A, Squizzato A. Ruxolitinib-associated infections: a systematic review and meta-analysis. Am J Hematol. 2018;93:339–47.

    CAS  PubMed  Google Scholar 

  41. Tremblay D, King A, Li L, Moshier E, Coltoff A, Koshy A, et al. Risk factors for infections and secondary malignancies in patients with a myeloproliferative neoplasm treated with ruxolitinib: a dual-center, propensity score-matched analysis. Leukemia & Lymphoma. 2020;61:660–7.

  42. Heine A, Held SA, Daecke SN, Wallner S, Yajnanarayana SP, Kurts C, et al. The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood. 2013;122:1192–202.

    CAS  PubMed  Google Scholar 

  43. Massa M, Rosti V, Campanelli R, Fois G, Barosi G. Rapid and long-lasting decrease of T-regulatory cells in patients with myelofibrosis treated with ruxolitinib. Leukemia. 2014;28:449–51.

    CAS  PubMed  Google Scholar 

  44. Keohane C, Kordasti S, Seidl T, Perez Abellan P, Thomas NS, Harrison CN, et al. JAK inhibition induces silencing of T Helper cytokine secretion and a profound reduction in T regulatory cells. Br J Haematol. 2015;171:60–73.

    CAS  PubMed  Google Scholar 

  45. Schonberg K, Rudolph J, Vonnahme M, Parampalli Yajnanarayana S, Cornez I, Hejazi M, et al. JAK inhibition impairs NK cell function in myeloproliferative neoplasms. Cancer Res. 2015;75:2187–99.

    PubMed  Google Scholar 

  46. Parampalli Yajnanarayana S, Stubig T, Cornez I, Alchalby H, Schonberg K, Rudolph J, et al. JAK1/2 inhibition impairs T cell function in vitro and in patients with myeloproliferative neoplasms. Br J Haematol. 2015;169:824–33.

    CAS  PubMed  Google Scholar 

  47. Nakayamada S, Kubo S, Iwata S, Tanaka Y. Chemical JAK inhibitors for the treatment of rheumatoid arthritis. Expert Opin Pharmacother. 2016;17:2215–25.

    CAS  PubMed  Google Scholar 

  48. Shreberk-Hassidim R, Ramot Y, Zlotogorski A. Janus kinase inhibitors in dermatology: a systematic review. J Am Acad Dermatol. 2017;76:745–53e19.

    CAS  PubMed  Google Scholar 

  49. Spoerl S, Mathew NR, Bscheider M, Schmitt-Graeff A, Chen S, Mueller T, et al. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood. 2014;123:3832–42.

    CAS  PubMed  Google Scholar 

  50. Choi J, Cooper ML, Alahmari B, Ritchey J, Collins L, Holt M, et al. Pharmacologic blockade of JAK1/JAK2 reduces GvHD and preserves the graft-versus-leukemia effect. PLoS One. 2014;9:e109799.

    PubMed  PubMed Central  Google Scholar 

  51. Perner F, Schnoder TM, Ranjan S, Wolleschak D, Ebert C, Pils MC, et al. Specificity of JAK-kinase inhibition determines impact on human and murine T-cell function. Leukemia. 2016;30:991–5.

    CAS  PubMed  Google Scholar 

  52. Mullally A, Hood J, Harrison C, Mesa R. Fedratinib in myelofibrosis. Blood Adv. 2020;4:1792–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jorgensen P, Mereckiene J, Cotter S, Johansen K, Tsolova S, Brown C. How close are countries of the WHO European Region to achieving the goal of vaccinating 75% of key risk groups against influenza? Results from national surveys on seasonal influenza vaccination programmes, 2008/2009 to 2014/2015. Vaccine. 2018;36:442–52.

    PubMed  PubMed Central  Google Scholar 

  54. Eurostat. Hospital beds. ec.europa.eu2020.

Download references

Funding

The regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, Blodcancerfonden, the Cancer Research Foundations of Radiumhemmet, Åke Olsson Foundation for Hematologic Research, and the Memorial Sloan Kettering Core Grant (P30 CA008748).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Landtblom, Andersson, Hultcrantz. Collection and assembly of data: Landtblom, Andersson, Dickman, Smedby, Eloranta, Björkholm, Hultcrantz. Data analysis and interpretation: All authors. Manuscript writing: Landtblom, Andersson, Hultcrantz. Final approval of manuscript: All authors.

Corresponding authors

Correspondence to Anna Ravn Landtblom or Malin Hultcrantz.

Ethics declarations

Conflict of interest

Andersson, Smedby, Eloranta, and Björkholm are involved in an ongoing public-private real world evidence collaboration between Karolinska Institutet and Janssen Pharmaceuticals, however, the current project is not related to this collaboration. Hultcrantz has received honoraria from Intellisphere, LLC, not related to this project. The remaining authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landtblom, A.R., Andersson, T.ML., Dickman, P.W. et al. Risk of infections in patients with myeloproliferative neoplasms—a population-based cohort study of 8363 patients. Leukemia 35, 476–484 (2021). https://doi.org/10.1038/s41375-020-0909-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0909-7

This article is cited by

Search

Quick links