Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN

Abstract

Recent studies have shown that miR-146b is the most upregulated microRNA in thyroid cancer and has a central role in cancer progression through mechanisms that remain largely unidentified. As phosphoinositide 3-kinase/protein kinase-B (PI3K/AKT) signaling is a fundamental oncogenic driver in many thyroid cancers, we explored a potential role for miR-146b and its target genes in PI3K/AKT activation. Among the predicted target genes of miR-146b, we found the tumor-suppressor phosphatase and tensin homolog (PTEN). Constitutive overexpression of miR-146b in thyroid epithelial cell lines significantly decreased PTEN mRNA and protein levels by direct binding to its 3′-UTR. This was accompanied by PI3K/AKT hyperactivation, leading to the exclusion of FOXO1 and p27 from the nucleus and a corresponding increase in cellular proliferation. Moreover, miR-146b overexpression led to protection from apoptosis and an increased migration and invasion potential, regulating genes involved in epithelial–mesenchymal transition. Notably, with the single exception of E-cadherin expression, all of these outcomes could be reversed by PTEN coexpression. Further analysis showed that miR-146b directly inhibits E-cadherin expression through binding to its 3′-UTR. Interestingly, miR-146b inhibition in human thyroid tumor xenografts, using a synthetic and clinically amenable molecule, blocked tumor growth when delivered intratumorally. Importantly, this inhibition increased PTEN protein levels. In conclusion, our data define a novel mechanism of PI3K/AKT hyperactivation and outline a regulatory role for miR-146b in suppressing PTEN expression, a frequent observation in thyroid cancer. Both events are related to a more aggressive tumoral phenotype. Targeting miR-146b therefore represents a promising therapeutic strategy for the treatment of this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. JAMA. 2017;317:1338–48.

    Article  PubMed  Google Scholar 

  2. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7:569–80.

    Article  CAS  PubMed  Google Scholar 

  3. Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A, et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene. 2003;22:4578–80.

    Article  CAS  PubMed  Google Scholar 

  4. Network CGAR. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90.

    Article  CAS  Google Scholar 

  5. Fagin JA, Wells SA Jr. Biologic and clinical perspectives on thyroid cancer. N Engl J Med. 2016;375:2307.

    Article  CAS  PubMed  Google Scholar 

  6. Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid. 2010;20:697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu R, Bishop J, Zhu G, Zhang T, Ladenson PW, Xing M, Mortality risk stratification by combining BRAF V600E and TERT promoter mutations in papillary thyroid cancer: genetic duet of BRAF and TERT promoter mutations in thyroid cancer mortality. JAMA Oncol. 2017;3:202–8.

    Article  Google Scholar 

  8. Xu B, Tuttle RMM, Sabra M, Ganly I, Ghossein RM, Primary thyroid carcinoma with low-risk histology and distant metastases: clinico-pathologic and molecular characteristics. Thyroid. 2017;27:632–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Su X, Jiang X, Wang W, Wang H, Xu X, Lin A, et al. Association of telomerase reverse transcriptase promoter mutations with clinicopathological features and prognosis of thyroid cancer: a meta-analysis. Onco Targets Ther. 2016;9:6965–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu C, Liu Z, Chen T, Zeng W, Guo Y, Huang T. TERT promoter mutation and its association with clinicopathological features and prognosis of papillary thyroid cancer: a meta-analysis. Sci Rep. 2016;6:36990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ricarte-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69:4885–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Santarpia L, El-Naggar AK, Cote GJ, Myers JN, Sherman SI. Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J Clin Endocrinol Metab. 2008;93:278–84.

    Article  CAS  PubMed  Google Scholar 

  13. Garcia-Rostan G, Costa AM, Pereira-Castro I, Salvatore G, Hernandez R, Hermsem MJ, et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 2005;65:10199–207.

    Article  CAS  PubMed  Google Scholar 

  14. Riesco-Eizaguirre G, Santisteban P. Endocrine tumours: advances in the molecular pathogenesis of thyroid cancer: lessons from the cancer genome. Eur J Endocrinol. 2016;175:R203–217.

    Article  CAS  PubMed  Google Scholar 

  15. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13:184–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126:1052–66.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Riesco-Eizaguirre G, Wert-Lamas L, Perales-Paton J, Sastre-Perona A, Fernandez LP, Santisteban P. The miR-146b-3p/PAX8/NIS regulatory circuit modulates the differentiation phenotype and function of thyroid cells during carcinogenesis. Cancer Res. 2015;75:4119–30.

    Article  CAS  PubMed  Google Scholar 

  18. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, Lu M, Qiu C, Cui Q. TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res. 2010;38:D119–122.

    Article  CAS  PubMed  Google Scholar 

  20. Pallante P, Battista S, Pierantoni GM, Fusco A. Deregulation of microRNA expression in thyroid neoplasias. Nat Rev Endocrinol. 2014;10:88–101.

    Article  CAS  PubMed  Google Scholar 

  21. Lee JC, Zhao JT, Clifton-Bligh RJ, Gill A, Gundara JS, Ip JC, et al. MicroRNA-222 and microRNA-146b are tissue and circulating biomarkers of recurrent papillary thyroid cancer. Cancer. 2013;119:4358–65.

    Article  CAS  PubMed  Google Scholar 

  22. Geraldo MV, Yamashita AS, Kimura ET. MicroRNA miR-146b-5p regulates signal transduction of TGF-beta by repressing SMAD4 in thyroid cancer. Oncogene. 2012;31:1910–22.

    Article  CAS  PubMed  Google Scholar 

  23. Deng X, Wu B, Xiao K, Kang J, Xie J, Zhang X, et al. MiR-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNRF3. Cell Physiol Biochem. 2015;35:71–82.

    Article  CAS  PubMed  Google Scholar 

  24. Lima CR, Geraldo MV, Fuziwara CS, Kimura ET, Santos MF. MiRNA-146b-5p upregulates migration and invasion of different papillary thyroid carcinoma cells. BMC Cancer. 2016;16:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13:283–96.

    Article  CAS  PubMed  Google Scholar 

  26. Bruni P, Boccia A, Baldassarre G, Trapasso F, Santoro M, Chiappetta G, et al. PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1. Oncogene. 2000;19:3146–55.

    Article  CAS  PubMed  Google Scholar 

  27. Frisk T, Foukakis T, Dwight T, Lundberg J, Hoog A, Wallin G, et al. Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer. 2002;35:74–80.

    Article  CAS  PubMed  Google Scholar 

  28. Guigon CJ, Zhao L, Willingham MC, Cheng SY. PTEN deficiency accelerates tumour progression in a mouse model of thyroid cancer. Oncogene. 2009;28:509–17.

    Article  CAS  PubMed  Google Scholar 

  29. Paes JE, Ringel MD. Dysregulation of the phosphatidylinositol 3-kinase pathway in thyroid neoplasia. Endocrinol Metab Clin North Am. 2008;37:375–87. viii-ix

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chou CK, Chi SY, Huang CH, Chou FF, Huang CC, Liu RT, et al. IRAK1, a target of miR-146b, reduces cell aggressiveness of human papillary thyroid carcinoma. J Clin Endocrinol Metab. 2016;101:4357–66.

    Article  CAS  PubMed  Google Scholar 

  31. Viglietto G, Motti ML, Bruni P, Melillo RM, D’Alessio A, Califano D, et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitorp27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med. 2002;8:1136–44.

    Article  CAS  PubMed  Google Scholar 

  32. Larrea MD, Wander SA, Slingerland JM. p27 as Jekyll and Hyde: regulation of cell cycle and cell motility. Cell Cycle. 2009;8:3455–61.

    Article  CAS  PubMed  Google Scholar 

  33. Zaballos MA, Santisteban P. FOXO1 controls thyroid cell proliferation in response to TSH and IGF-I and is involved in thyroid tumorigenesis. Mol Endocrinol. 2013;27:50–62.

    Article  CAS  PubMed  Google Scholar 

  34. Medina DL, Velasco JA, Santisteban P. Somatostatin is expressed in FRTL-5 thyroid cells and prevents thyrotropin-mediated down-regulation of the cyclin-dependent kinase inhibitor p27kip1. Endocrinology. 1999;140:87–95.

    Article  CAS  PubMed  Google Scholar 

  35. Hein AL, Ouellette MM, Yan Y. Radiation-induced signaling pathways that promote cancer cell survival (review). Int J Oncol. 2014;45:1813–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pirnia F, Schneider E, Betticher DC, Borner MM. Mitomycin C induces apoptosis and caspase-8 and -9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ. 2002;9:905–14.

    Article  CAS  PubMed  Google Scholar 

  37. Fuziwara CS, Kimura ET. MicroRNA deregulation in anaplastic thyroid cancer biology. Int J Endocrinol. 2014;2014:743450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chou CK, Yang KD, Chou FF, Huang CC, Lan YW, Lee YF, et al. Prognostic implications of miR-146b expression and its functional role in papillary thyroid carcinoma. J Clin Endocrinol Metab. 2013;98:E196–205.

    Article  CAS  PubMed  Google Scholar 

  39. Dettmer M, Perren A, Moch H, Komminoth P, Nikiforov YE, Nikiforova MN. Comprehensive MicroRNA expression profiling identifies novel markers in follicular variant of papillary thyroid carcinoma. Thyroid. 2013;23:1383–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wojtas B, Ferraz C, Stokowy T, Hauptmann S, Lange D, Dralle H, et al. Differential miRNA expression defines migration and reduced apoptosis in follicular thyroid carcinomas. Mol Cell Endocrinol. 2014;388:1–9.

    Article  CAS  PubMed  Google Scholar 

  41. Fassina A, Cappellesso R, Simonato F, Siri M, Ventura L, Tosato F, et al. A 4-microRNA signature can discriminate primary lymphomas from anaplastic carcinomas in thyroid cytology smears. Cancer Cytopathol. 2014;122:274–81.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Z, Hou P, Ji M, Guan H, Studeman K, Jensen K, et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab. 2008;93:3106–16.

    Article  CAS  PubMed  Google Scholar 

  43. Miller KA, Yeager N, Baker K, Liao XH, Refetoff S, Di Cristofano A. Oncogenic Kras requires simultaneous PI3K signaling to induce ERK activation and transform thyroid epithelial cells in vivo. Cancer Res. 2009;69:3689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yeager N, Klein-Szanto A, Kimura S, Di Cristofano A. Pten loss in the mouse thyroid causes goiter and follicular adenomas: insights into thyroid function and Cowden disease pathogenesis. Cancer Res. 2007;67:959–66.

    Article  CAS  PubMed  Google Scholar 

  45. Kandel ES, Skeen J, Majewski N, Di Cristofano A, Pandolfi PP, Feliciano CS, et al. Activation of Akt/protein kinase B overcomes a G(2)/m cell cycle checkpoint induced by DNA damage. Mol Cell Biol. 2002;22:7831–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Burger ML, Xue L, Sun Y, Kang C, Winoto A. Premalignant PTEN-deficient thymocytes activate microRNAs miR-146a and miR-146b as a cellular defense against malignant transformation. Blood. 2014;123:4089–4100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006;103:12481–6.

    Article  CAS  Google Scholar 

  48. Pacifico F, Leonardi A. Role of NF-kappaB in thyroid cancer. Mol Cell Endocrinol. 2010;321:29–35.

    Article  CAS  PubMed  Google Scholar 

  49. Xiang M, Birkbak NJ, Vafaizadeh V, Walker SR, Yeh JE, Liu S, et al. STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-kappaB to IL-6 signaling axis and STAT3-driven cancer phenotypes. Sci Signal. 2014;7:ra11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Couto JP, Daly L, Almeida A, Knauf JA, Fagin JA, Sobrinho-Simoes M, et al. STAT3 negatively regulates thyroid tumorigenesis. Proc Natl Acad Sci USA. 2012;109:E2361–2370.

    Article  CAS  PubMed  Google Scholar 

  51. Sosonkina N, Starenki D, Park JI. The role of STAT3 in thyroid cancer. Cancers (Basel). 2014;6:526–44.

    Article  CAS  Google Scholar 

  52. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431:461–6.

    Article  CAS  PubMed  Google Scholar 

  53. Acibucu F, Dokmetas HS, Tutar Y, Elagoz S, Kilicli F. Correlations between the expression levels of micro-RNA146b, 221, 222 and p27Kip1 protein mRNA and the clinicopathologic parameters in papillary thyroid cancers. Exp Clin Endocrinol Diabetes. 2014;122:137–43.

    Article  CAS  PubMed  Google Scholar 

  54. Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov. 2014;13:622–38.

    Article  CAS  Google Scholar 

  55. Fusco A, Berlingieri MT, Di Fiore PP, Portella G, Grieco M, Vecchio G. One- and two-step transformations of rat thyroid epithelial cells by retroviral oncogenes. Mol Cell Biol. 1987;7:3365–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lemoine NR, Mayall ES, Jones T, Sheer D, McDermid S, Kendall-Taylor P, et al. Characterisation of human thyroid epithelial cells immortalised in vitro by simian virus 40 DNA transfection. Br J Cancer. 1989;60:897–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sastre-Perona A, Riesco-Eizaguirre G, Zaballos MA, Santisteban P. Beta-catenin signaling is required for RAS-driven thyroid cancer through PI3K activation. Oncotarget. 2016;7:49435–49.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu F, Wagner S, Campbell RB, Nickerson JA, Schiffer CA, Ross AH. PTEN enters the nucleus by diffusion. J Cell Biochem. 2005;96:221–34.

    Article  CAS  PubMed  Google Scholar 

  59. Greene SB, Gunaratne PH, Hammond SM, Rosen JM. A putative role for microRNA-205 in mammary epithelial cell progenitors. J Cell Sci. 2010;123:606–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010;12:247–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Riesco-Eizaguirre G, Rodriguez I, De la Vieja A, Costamagna E, Carrasco N, Nistal M, et al. The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res. 2009;69:8317–25.

    Article  CAS  PubMed  Google Scholar 

  62. Santisteban P, Acebron A, Polycarpou-Schwarz M, Di Lauro R. Insulin and insulin-like growth factor I regulate a thyroid-specific nuclear protein that binds to the thyroglobulin promoter. Mol Endocrinol. 1992;6:1310–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Andrea Martinez-Cano for her technical assistance, Javier Perez for the artwork and Dr Kenneth McCreath for helpful comments on the manuscript. We thank Dr Jerónimo Blanco (Catalonian Institute for Advance Chemistry-CSIC) and Dr Eugenia Mato (Institut de Reserca de l’Hospital de la Santa Creu i Sant Pau) Barcelona (Spain) for gifting the CMV-Firefly luc-IRES-EGFP and Cal62-Luc cells, respectively. We also thank the Histology Facility at CNB-CSIC for the histological preparation of biological samples. This work was supported by grants SAF2013-44709-R and SAF2016-75531-R from the Ministerio de Economía y Competitividad (MINECO) of Spain, RD12/0036/0030 from Instituto de Salud Carlos III (ISCIII), Fondo Europeo de Desarrollo Regional (FEDER), and GCB14142311CRES from Fundación Española contra el Cancer. JR-M holds a FPU fellowship from Ministerio de Educación Cultura y Deporte. LW-L was funded by an FPI fellowship from MEC and is currently an investigator of the project PI14/01980 from ISCIII (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Santisteban.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Moya, J., Wert-Lamas, L. & Santisteban, P. MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN. Oncogene 37, 3369–3383 (2018). https://doi.org/10.1038/s41388-017-0088-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-017-0088-9

This article is cited by

Search

Quick links