Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SPAG5 promotes proliferation and suppresses apoptosis in bladder urothelial carcinoma by upregulating Wnt3 via activating the AKT/mTOR pathway and predicts poorer survival

Abstract

Sperm-associated antigen 5 (SPAG5) is involved in various biological processes. However, the roles of SPAG5 in bladder urothelial carcinoma (BUC) are unknown. This study showed that upregulation of SPAG5 was detected frequently in primary BUC tissues, and was associated with significantly worse survival among the 112 patients that underwent radical cystectomy (RC). Up and downregulating the expression of SPAG5 enhanced or inhibited, respectively, the proliferation of BUC cells in vitro and in vivo, and suppressed or enhanced, respectively, apoptosis in vitro and in vivo. Moreover, SPAG5 increased the resistance of BUC cells to chemotherapy-induced apoptosis. Mechanistic investigations showed that SPAG5 promotes proliferation and suppresses apoptosis in BUC at least partially via upregulating Wnt3 through activating the AKT/mTOR signaling pathway. The importance of the SPAG5/AKT-mTOR/Wnt3 axis identified in BUC cell models was confirmed via immunohistochemical analysis of a cohort of human BUC specimens that underwent RC. Collectively, our data suggested that in patients with BUC who underwent RC, high SPAG5 expression is associated with poor survival. In addition, targeting SPAG5 might represent a novel therapeutic strategy to improve the survival of patients with BUC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Steele LP, Georgopoulos NT, Southgate J, Selby PJ, Trejdosiewicz LK. Differential susceptibility to TRAIL of normal versus malignant human urothelial cells. Cell Death Differ. 2006;13:1564–76.

    Article  PubMed  CAS  Google Scholar 

  3. Lotan Y, Gupta A, Shariat SF, Palapattu GS, Vazina A, Karakiewicz PI, et al. Lymphovascular invasion is independently associated with overall survival, cause-specific survival, and local and distant recurrence in patients with negative lymph nodes at radical cystectomy. J Clin Oncol. 2005;23:6533–9.

    Article  PubMed  Google Scholar 

  4. Stein JP, Lieskovsky G, Cote R, Groshen S, Feng AC, Boyd S, et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1054 patients. J Clin Oncol. 2001;19:666–75.

    Article  PubMed  CAS  Google Scholar 

  5. Kaufman DS, Shipley WU, Feldman AS. Bladder cancer. Lancet. 2009;374:239–49.

    Article  PubMed  CAS  Google Scholar 

  6. Sternberg CN, Skoneczna I, Kerst JM, Albers P, Fossa SD, Agerbaek M, et al. Immediate versus deferred chemotherapy after radical cystectomy in patients with pT3-pT4 or N + M0 urothelial carcinoma of the bladder (EORTC 30994): an intergroup, open-label, randomised phase 3 trial. Lancet Oncol. 2015;16:76–86.

    Article  PubMed  Google Scholar 

  7. Leow JJ, Martin Doyle W, Rajagopal PS, Patel CG, Anderson EM, Rothman AT, et al. Adjuvant chemotherapy for invasive bladder cancer: a 2013 updated systematic review and meta-analysis of randomized trials. Eur Urol. 2014;66:42–54.

    Article  PubMed  CAS  Google Scholar 

  8. Babjuk M, Bohle A, Burger M, Capoun O, Cohen D, Comperat EM, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016. Eur Urol. 2017;71:447–61.

    Article  PubMed  Google Scholar 

  9. Alfred Witjes J, Lebret T, Comperat EM, Cowan NC, De Santis M, Bruins HM, et al. Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur Urol. 2017;71:462–75.

    Article  PubMed  CAS  Google Scholar 

  10. Diamandis M, White NM, Yousef GM. Personalized medicine: marking a new epoch in cancer patient management. Mol Cancer Res. 2010;8:1175–87.

    Article  PubMed  CAS  Google Scholar 

  11. Lotan Y, Bagrodia A, Passoni N, Rachakonda V, Kapur P, Arriaga Y, et al. Prospective evaluation of a molecular marker panel for prediction of recurrence and cancer-specific survival after radical cystectomy. Eur Urol. 2013;64:465–71.

    Article  PubMed  CAS  Google Scholar 

  12. Slomovitz BM, Coleman RL. The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res. 2012;18:5856–64.

    Article  PubMed  CAS  Google Scholar 

  13. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Liu PP, Liao J, Tang ZJ, Wu WJ, Yang J, Zeng ZL, et al. Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death Differ. 2014;21:124–35.

    Article  PubMed  CAS  Google Scholar 

  15. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9–22.

    Article  PubMed  CAS  Google Scholar 

  16. Easton JB, Houghton PJ. mTOR and cancer therapy. Oncogene. 2006;25:6436–46.

    Article  PubMed  CAS  Google Scholar 

  17. Chang MS, Huang CJ, Chen ML, Chen ST, Fan CC, Chu JM, et al. Cloning and characterization of hMAP126, a new member of mitotic spindle-associated proteins. Biochem Biophys Res Commun. 2001;287:116–21.

    Article  PubMed  CAS  Google Scholar 

  18. Mack GJ, Compton DA. Analysis of mitotic microtubule-associated proteins using mass spectrometry identifies astrin, a spindle-associated protein. Proc Natl Acad Sci USA. 2001;98:14434–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Manning AL, Bakhoum SF, Maffini S, Correia-Melo C, Maiato H, Compton DA. CLASP1, astrin and Kif2b form a molecular switch that regulates kinetochore-microtubule dynamics to promote mitotic progression and fidelity. EMBO J. 2010;29:3531–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Buechler S. Low expression of a few genes indicates good prognosis in estrogen receptor positive breast cancer. BMC Cancer. 2009;9:243.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Valk K, Vooder T, Kolde R, Reintam MA, Petzold C, Vilo J, et al. Gene expression profiles of non-small cell lung cancer: survival prediction and new biomarkers. Oncology. 2010;79:283–92.

    Article  PubMed  CAS  Google Scholar 

  22. Cornen S, Guille A, Adelaide J, Addou-Klouche L, Finetti P, Saade MR, et al. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling. PLoS ONE. 2014;9:e81843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Abdel-Fatah TM, Agarwal D, Liu DX, Russell R, Rueda OM, Liu K, et al. SPAG5 as a prognostic biomarker and chemotherapy sensitivity predictor in breast cancer: a retrospective, integrated genomic, transcriptomic, and protein analysis. Lancet Oncol. 2016;17:1004–18.

    Article  PubMed  CAS  Google Scholar 

  24. Yuan LJ, Li JD, Zhang L, Wang JH, Wan T, Zhou Y, et al. SPAG5 upregulation predicts poor prognosis in cervical cancer patients and alters sensitivity to taxol treatment via the mTOR signaling pathway. Cell Death Dis. 2014;5:e1247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T, et al. Autophagy negatively regulates Wnt signalling by promoting dishevelled degradation. Nat Cell Biol. 2010;12:781–90.

    Article  PubMed  CAS  Google Scholar 

  26. Kim SE, Lee WJ, Choi KY. The PI3 kinase-Akt pathway mediates Wnt3a-induced proliferation. Cell Signal. 2007;19:511–8.

    Article  PubMed  CAS  Google Scholar 

  27. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chen WJ, Tang RX, He RQ, Li DY, Liang L, Zeng JH, et al. Clinical roles of the aberrantly expressed lncRNAs in lung squamous cell carcinoma: a study based on RNA-sequencing and microarray data mining. Oncotarget. 2017;8:61282–304.

    PubMed  PubMed Central  Google Scholar 

  29. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11–26.

    Article  PubMed  CAS  Google Scholar 

  30. Kim M, Lee HC, Tsedensodnom O, Hartley R, Lim YS, Yu E, et al. Functional interaction between Wnt3 and Frizzled-7 leads to activation of the Wnt/beta-catenin signaling pathway in hepatocellular carcinoma cells. J Hepatol. 2008;48:780–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bengochea A, de Souza MM, Lefrancois L, Le Roux E, Galy O, Chemin I, et al. Common dysregulation of Wnt/Frizzled receptor elements in human hepatocellular carcinoma. Br J Cancer. 2008;99:143–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Poppova L, Janovska P, Plevova K, Radova L, Plesingerova H, Borsky M, et al. Decreased WNT3 expression in chronic lymphocytic leukaemia is a hallmark of disease progression and identifies patients with worse prognosis in the subgroup with mutated IGHV. Br J Haematol. 2016;175:851–9.

    Article  PubMed  CAS  Google Scholar 

  33. Siu MK, Tsai YC, Chang YS, Yin JJ, Suau F, Chen WY, et al. Transforming growth factor-beta promotes prostate bone metastasis through induction of microRNA-96 and activation of the mTOR pathway. Oncogene. 2015;34:4767–76.

    Article  PubMed  CAS  Google Scholar 

  34. Samarin J, Laketa V, Malz M, Roessler S, Stein I, Horwitz E, et al. PI3K/AKT/mTOR-dependent stabilization of oncogenic far-upstream element binding proteins in hepatocellular carcinoma cells. Hepatology. 2016;63:813–26.

    Article  PubMed  CAS  Google Scholar 

  35. Peng Y, Li L, Huang M, Duan C, Zhang L, Chen J. Angiogenin interacts with ribonuclease inhibitor regulating PI3K/AKT/mTOR signaling pathway in bladder cancer cells. Cell Signal. 2014;26:2782–92.

    Article  PubMed  CAS  Google Scholar 

  36. Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4:335–48.

    Article  PubMed  CAS  Google Scholar 

  37. Johansson I, Ringner M, Hedenfalk I. The landscape of candidate driver genes differs between male and female breast cancer. PLoS ONE. 2013;8:e78299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Thedieck K, Holzwarth B, Prentzell MT, Boehlke C, Klasener K, Ruf S, et al. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell. 2013;154:859–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant nos. 81301688, 81572965, and 81572689), the Innovation-Driven Project of Central South University (Grant no. 2017CX012), the “125 Talent Project” and “New Xiangya Talent Project” of the Third Xiangya Hospital of Central South University, the New Xiangya Talent Projects of the Third Xiangya Hospital of Central South University (Grant no. JY201615), and the Scientific Projects of Health and Family Planning Commision of Hunan Province (Grant no. B2017034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J.Y., Zeng, Q.H., Cao, P.G. et al. SPAG5 promotes proliferation and suppresses apoptosis in bladder urothelial carcinoma by upregulating Wnt3 via activating the AKT/mTOR pathway and predicts poorer survival. Oncogene 37, 3937–3952 (2018). https://doi.org/10.1038/s41388-018-0223-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0223-2

This article is cited by

Search

Quick links