Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways

Abstract

While immunosuppressive environments mediated by myeloid-derived suppressor cells (MDSCs) have been well documented in glioma patients, the mechanisms of MDSC development and activation have not been clearly defined. Here, we elucidated a role for glioma-derived exosomes (GDEs) in potentiating an MDSC pathway. We isolated normoxia-stimulated and hypoxia-stimulated GDEs and studied their MDSC induction abilities in vivo and in vitro. Analyses of spleen and bone marrow MDSC proportions (flow cytometry) and reactive oxygen species (ROS), arginase activity, nitric oxide (NO), T-cell proliferation and immunosuppressive cytokine (IL-10 and TGF-β, ELISA) levels were used to assess MDSC expansion and functional capacity. We also performed microRNA (miRNA) sequencing analysis of two types of GDEs to find miRNAs that potentially mediate the development and activation of MDSCs. GDE miRNA intracellular signaling in MDSCs was also studied. Hypoxia promoted the secretion of GDEs, and mouse MDSCs could uptake GDEs. Hypoxia-stimulated GDEs had a stronger ability to induce MDSCs than N-GDEs. The hypoxia-inducible expression of miR-10a and miR-21 in GDEs mediated GDE-induced MDSC expansion and activation by targeting RAR-related orphan receptor alpha (RORA) and phosphatase and tensin homolog (PTEN). Mice inoculated with miR-10a or miR-21 knockout glioma cells generated fewer MDSCs than those inoculated with normal glioma cells. These data elucidated a mechanism by which glioma cells influence the differentiation and activation of MDSCs via exosomes and demonstrated how local glioma hypoxia affects the entirety of tumor immune environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Condamine T, Ramachandran I, Youn JI, Gabrilovich DI. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med. 2015;66:97–110.

    Article  PubMed  CAS  Google Scholar 

  3. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182:4499–506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007;25:2546–53.

    Article  PubMed  CAS  Google Scholar 

  5. Liu C, Yu S, Kappes J, Wang J, Grizzle WE, Zinn KR, et al. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood. 2007;109:4336–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans. 2013;41:245–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhang HG, Grizzle WE. Exosomes and cancer: a newly described pathway of immune suppression. Clin Cancer Res. 2011;17:959–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, et al. Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ. 2008;15:80–88.

    Article  PubMed  CAS  Google Scholar 

  10. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  PubMed  CAS  Google Scholar 

  11. Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, et al. Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer. 2009;124:2621–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. van der Vos KE, Abels ER, Zhang X, Lai C, Carrizosa E, Oakley D, et al. Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro Oncol. 2016;18:58–69.

    Article  PubMed  CAS  Google Scholar 

  13. Hellwinkel JE, Redzic JS, Harland TA, Gunaydin D, Anchordoquy TJ, Graner MW. Glioma-derived extracellular vesicles selectively suppress immune responses. Neuro Oncol. 2016;18:497–506.

    Article  PubMed  CAS  Google Scholar 

  14. Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol. 2005;109:93–108.

    Article  PubMed  Google Scholar 

  15. Dunn-Pirio AM, Vlahovic G. Immunotherapy approaches in the treatment of malignant brain tumors. Cancer. 2017;123:734–50.

    Article  PubMed  Google Scholar 

  16. Rong Y, Durden DL, Van Meir EG, Brat DJ. ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol. 2006;65:529–39.

    Article  PubMed  Google Scholar 

  17. King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res. 2016;76:1770–80.

    Article  PubMed  CAS  Google Scholar 

  19. Tadokoro H, Umezu T, Ohyashiki K, Hirano T, Ohyashiki JH. Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem. 2013;288:34343–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Noman MZ, Janji B, Hu S, Wu JC, Martelli F, Bronte V, et al. Tumor-promoting effects of myeloid-derived suppressor cells are potentiated by hypoxia-induced expression of miR-210. Cancer Res. 2015;75:3771–87.

    Article  PubMed  CAS  Google Scholar 

  21. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L, et al. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol. 2007;178:6867–75.

    Article  PubMed  CAS  Google Scholar 

  23. Gieryng A, Kaminska B. Myeloid-derived suppressor cells in gliomas. Contemp Oncol. 2016;20:345–51.

    Google Scholar 

  24. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011;32:19–25.

    Article  PubMed  CAS  Google Scholar 

  26. Delerive P, Monte D, Dubois G, Trottein F, Fruchart-Najib J, Mariani J, et al. The orphan nuclear receptor ROR alpha is a negative regulator of the inflammatory response. EMBO Rep. 2001;2:42–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ajibade AA, Wang Q, Cui J, Zou J, Xia X, Wang M, et al. TAK1 negatively regulates NF-κB and p38 MAP kinase activation in Gr-1(+)CD11b(+) neutrophils. Immunity. 2012;36:43–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010;39:493–506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li L, Zhang J, Diao W, Wang D, Wei Y, Zhang CY, et al. MicroRNA-155 and MicroRNA-21 promote the expansion of functional myeloid-derived suppressor cells. J Immunol. 2014;192:1034–43.

    Article  PubMed  CAS  Google Scholar 

  30. Zaidi AH, Manna SK. Profilin-PTEN interaction suppresses NF-kappaB activation via inhibition of IKK phosphorylation. Biochem J. 2016;473:859–72.

    Article  PubMed  CAS  Google Scholar 

  31. Liu SF, Ye X, Malik AB. Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate prevents In vivo expression of proinflammatory genes. Circulation. 1999;100:1330–7.

    Article  PubMed  CAS  Google Scholar 

  32. Fujita M, Kohanbash G, Fellows-Mayle W, Hamilton RL, Komohara Y, Decker SA, et al. COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 2011;71:2664–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dubois LG, Campanati L, Righy C, D’Andrea-Meira I, Spohr TC, Porto-Carreiro I, et al. Gliomas and the vascular fragility of the blood brain barrier. Front Cell Neurosci. 2014;8:418.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV, et al. Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng. 2016;9:509–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32:2003–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Otvos B, Silver DJ, Mulkearns-Hubert EE, Alvarado AG, Turaga SM, Sorensen MD, et al. Cancer stem cell-secreted macrophage migration inhibitory factor stimulates myeloid derived suppressor cell function and facilitates glioblastoma immune evasion. Stem Cells. 2016;34:2026–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Nduom EK, Weller M, Heimberger AB. Immunosuppressive mechanisms in glioblastoma. Neuro Oncol. 2015;17(Suppl 7):vii9–vii14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Guo X, Xue H, Guo X, Gao X, Xu S, Yan S, et al. MiR224-3p inhibits hypoxia-induced autophagy by targeting autophagy-related genes in human glioblastoma cells. Oncotarget. 2015;6:41620–37.

    PubMed  PubMed Central  Google Scholar 

  39. Xue H, Guo X, Han X, Yan S, Zhang J, Xu S, et al. MicroRNA-584-3p, a novel tumor suppressor and prognostic marker, reduces the migration and invasion of human glioma cells by targeting hypoxia-induced ROCK1. Oncotarget. 2016;7:4785–805.

    PubMed  Google Scholar 

  40. Guo X, Xue H, Shao Q, Wang J, Guo X, Chen X, et al. Hypoxia promotes glioma-associated macrophage infiltration via periostin and subsequent M2 polarization by upregulating TGF-beta and M-CSFR. Oncotarget. 2016;7:80521–42.

    PubMed  PubMed Central  Google Scholar 

  41. Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, et al. HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med. 2010;207:2439–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy. 2016;12:1129–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bott A, Erdem N, Lerrer S, Hotz-Wagenblatt A, Breunig C, Abnaof K, et al. miRNA-1246 induces pro-inflammatory responses in mesenchymal stem/stromal cells by regulating PKA and PP2A. Oncotarget. 2017;8:43897–914.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wu W, He C, Liu C, Cao AT, Xue X, Evans-Marin HL, et al. miR-10a inhibits dendritic cell activation and Th1/Th17 cell immune responses in IBD. Gut. 2015;64:1755–64.

    Article  PubMed  CAS  Google Scholar 

  45. Jeker LT, Zhou X, Gershberg K, de Kouchkovsky D, Morar MM, Stadthagen G, et al. MicroRNA 10a marks regulatory T cells. PLoS One. 2012;7:e36684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Garcia JA, Volt H, Venegas C, Doerrier C, Escames G, Lopez LC, et al. Disruption of the NF-kappaB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-alpha and blocks the septic response in mice. FASEB J. 2015;29:3863–75.

    Article  PubMed  CAS  Google Scholar 

  47. Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E, Camelo A, et al. Transcription factor RORalpha is critical for nuocyte development. Nat Immunol. 2012;13:229–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, et al. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 2016;18:90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014;124:2136–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by of the National Natural Science Foundation of China, Department of Science& Technology of Shandong Province, Brain Science Research Institute of Shandong University, Department of Neurosurgery of Qilu Hospital of Shandong University. We thank Professor Xun Qu for helpful comments and advice on this work.

Funding

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81101594; 81372719; 81172403; 81300510; 81402077; 81571284; 91542115; 81702468), National Natural Science Foundation of Shandong Province of China (No. 2017CXGC1203) and Taishan Scholars of Shandong Province of China (No. ts201511093).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Xue or Gang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

First author’s name: Xiaofan Guo and Wei Qiu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Qiu, W., Liu, Q. et al. Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways. Oncogene 37, 4239–4259 (2018). https://doi.org/10.1038/s41388-018-0261-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0261-9

This article is cited by

Search

Quick links