Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemokine and chemotactic signals in dendritic cell migration

Abstract

Dendritic cells (DCs) are professional antigen-presenting cells responsible for the activation of specific T-cell responses and for the development of immune tolerance. Immature DCs reside in peripheral tissues and specialize in antigen capture, whereas mature DCs reside mostly in the secondary lymphoid organs where they act as antigen-presenting cells. The correct localization of DCs is strictly regulated by a large variety of chemotactic and nonchemotactic signals that include bacterial products, DAMPs (danger-associated molecular patterns), complement proteins, lipids, and chemokines. These signals function both individually and in concert, generating a complex regulatory network. This network is regulated at multiple levels through different strategies, such as synergistic interactions, proteolytic processing, and the actions of atypical chemokine receptors. Understanding this complex scenario will help to clarify the role of DCs in different pathological conditions, such as autoimmune diseases and cancers and will uncover new molecular targets for therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Steinman, R. M. Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30, 1–22 (2012).

    CAS  PubMed  Google Scholar 

  2. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    CAS  PubMed  Google Scholar 

  3. Murphy, T. L. et al. Transcriptional control of dendritic cell development. Annu. Rev. Immunol. 34, 93–119 (2016).

    CAS  PubMed  Google Scholar 

  4. Randolph, G. J., Ochando, J. & Partida-Sanchez, S. Migration of dendritic cell subsets and their precursors. Annu. Rev. Immunol. 26, 293–316 (2008).

    CAS  PubMed  Google Scholar 

  5. Durai, V. & Murphy, K. M. Functions of murine dendritic cells. Immunity 45, 719–736 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Briseno, C. G., Murphy, T. L. & Murphy, K. M. Complementary diversification of dendritic cells and innate lymphoid cells. Curr. Opin. Immunol. 29, 69–78 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Itano, A. A. & Jenkins, M. K. Antigen presentation to naive CD4 T cells in the lymph node. Nat. Immunol. 4, 733–739 (2003).

    CAS  PubMed  Google Scholar 

  8. Lanzavecchia, A. & Sallusto, F. The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics. Curr. Opin. Immunol. 13, 291–298 (2001).

    CAS  PubMed  Google Scholar 

  9. Del Prete, A. et al. Migration of dendritic cells across blood and lymphatic endothelial barriers. Thromb. Haemost. 95, 22–28 (2006).

    PubMed  Google Scholar 

  10. Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288 (2004).

    CAS  PubMed  Google Scholar 

  11. Sozzani, S. Dendritic cell trafficking: more than just chemokines. Cytokine Growth Factor. Rev. 16, 581–592 (2005).

    CAS  PubMed  Google Scholar 

  12. Lukacs-Kornek, V., Engel, D., Tacke, F. & Kurts, C. The role of chemokines and their receptors in dendritic cell biology. Front. Biosci. 13, 2238–2252 (2008).

    CAS  PubMed  Google Scholar 

  13. Bachelerie, F. et al. An atypical addition to the chemokine receptor nomenclature: IUPHAR Review 15. Br. J. Pharmacol. 172, 3945–3949 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Griffith, J. W., Sokol, C. L. & Luster, A. D. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol. 32, 659–702 (2014).

    CAS  PubMed  Google Scholar 

  15. Mantovani, A., Locati, M., Vecchi, A., Sozzani, S. & Allavena, P. Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol. 22, 328–336 (2001).

    CAS  PubMed  Google Scholar 

  16. Bonecchi, R. & Graham, G. J. Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front. Immunol. 7, 224 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. Nibbs, R. J. & Graham, G. J. Immune regulation by atypical chemokine receptors. Nat. Rev. Immunol. 13, 815–829 (2013).

    PubMed  Google Scholar 

  18. Sozzani, S., Vermi, W., Del Prete, A. & Facchetti, F. Trafficking properties of plasmacytoid dendritic cells in health and disease. Trends Immunol. 31, 270–277 (2010).

    CAS  PubMed  Google Scholar 

  19. Yun, T. J. et al. Indoleamine 2,3-dioxygenase-expressing aortic plasmacytoid dendritic cells protect against atherosclerosis by induction of regulatory T cells. Cell. Metab. 23, 852–866 (2016).

    CAS  PubMed  Google Scholar 

  20. Sozzani, S. et al. Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J. Immunol. 161, 1083–1086 (1998).

    CAS  PubMed  Google Scholar 

  21. Nakano, H., Lyons-Cohen, M. R., Whitehead, G. S., Nakano, K. & Cook, D. N. Distinct functions of CXCR4, CCR2, and CX3CR1 direct dendritic cell precursors from the bone marrow to the lung. J. Leukoc. Biol. 101, 1143–1153 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tassone, L. et al. Defect of plasmacytoid dendritic cells in warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome patients. Blood 116, 4870–4873 (2010).

    CAS  PubMed  Google Scholar 

  23. Clausen, B. E. & Stoitzner, P. Functional specialization of skin dendritic cell subsets in regulating T cell responses. Front. Immunol. 6, 534 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Braun, A. et al. Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat. Immunol. 12, 879–887 (2011).

    CAS  PubMed  Google Scholar 

  25. Lian, J. & Luster, A. D. Chemokine-guided cell positioning in the lymph node orchestrates the generation of adaptive immune responses. Curr. Opin. Cell. Biol. 36, 1–6 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson, L. A. & Jackson, D. G. Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key regulator of integrin-mediated dendritic cell transmigration. Int. Immunol. 22, 839–849 (2010).

    CAS  PubMed  Google Scholar 

  27. Vaahtomeri, K. et al. Locally triggered release of the chemokine CCL21 promotes dendritic cell transmigration across lymphatic endothelia. Cell Rep. 19, 902–909 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Weber, M. et al. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339, 328–332 (2013).

    CAS  PubMed  Google Scholar 

  29. Tal, O. et al. DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J. Exp. Med. 208, 2141–2153 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. MartIn-Fontecha, A. et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198, 615–621 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Del Prete, A. et al. Regulation of dendritic cell migration and adaptive immune response by leukotriene B4 receptors: a role for LTB4 in up-regulation of CCR7 expression and function. Blood 109, 626–631 (2007).

    PubMed  PubMed Central  Google Scholar 

  32. Middel, P., Raddatz, D., Gunawan, B., Haller, F. & Radzun, H. J. Increased number of mature dendritic cells in Crohn’s disease: evidence for a chemokine mediated retention mechanism. Gut 55, 220–227 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schumann, K. et al. Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32, 703–713 (2010).

    CAS  PubMed  Google Scholar 

  34. Bryce, S. A. et al. ACKR4 on stromal cells scavenges CCL19 to enable CCR7-dependent trafficking of APCs from inflamed skin to lymph nodes. J. Immunol. 196, 3341–3353 (2016).

    CAS  PubMed  Google Scholar 

  35. Ulvmar, M. H. et al. The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nat. Immunol. 15, 623–630 (2014).

    CAS  PubMed  Google Scholar 

  36. Leventhal, D. S. et al. Dendritic cells coordinate the development and homeostasis of organ-specific regulatory T cells. Immunity 44, 847–859 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnson, L. A. & Jackson, D. G. The chemokine CX3CL1 promotes trafficking of dendritic cells through inflamed lymphatics. J. Cell. Sci. 126, 5259–5270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kabashima, K. et al. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am. J. Pathol. 171, 1249–1257 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Stutte, S. et al. Requirement of CCL17 for CCR7- and CXCR4-dependent migration of cutaneous dendritic cells. Proc. Natl Acad. Sci. Usa. 107, 8736–8741 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ruland C. et al. Chemokine CCL17 is expressed by dendritic cells in the CNS during experimental autoimmune encephalomyelitis and promotes pathogenesis of disease. Brain Behav Immun. 66, 382–393 (2017).

    CAS  PubMed  Google Scholar 

  41. Gouwy, M., Struyf, S., Catusse, J., Proost, P. & Van Damme, J. Synergy between proinflammatory ligands of G protein-coupled receptors in neutrophil activation and migration. J. Leukoc. Biol. 76, 185–194 (2004).

    CAS  PubMed  Google Scholar 

  42. Gouwy, M. et al. Chemokines and other GPCR ligands synergize in receptor-mediated migration of monocyte-derived immature and mature dendritic cells. Immunobiology 219, 218–229 (2014).

    CAS  PubMed  Google Scholar 

  43. Sebastiani, S., Danelon, G., Gerber, B. & Uguccioni, M. CCL22-induced responses are powerfully enhanced by synergy inducing chemokines via CCR4: evidence for the involvement of first beta-strand of chemokine. Eur. J. Immunol. 35, 746–756 (2005).

    CAS  PubMed  Google Scholar 

  44. Panzer, U. & Uguccioni, M. Prostaglandin E2 modulates the functional responsiveness of human monocytes to chemokines. Eur. J. Immunol. 34, 3682–3689 (2004).

    CAS  PubMed  Google Scholar 

  45. Sadik, C. D. & Luster, A. D. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J. Leukoc. Biol. 91, 207–215 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sozzani, S. et al. Synergism between platelet activating factor and C-C chemokines for arachidonate release in human monocytes. Biochem. Biophys. Res. Commun. 199, 761–766 (1994).

    CAS  PubMed  Google Scholar 

  47. Penna, G., Sozzani, S. & Adorini, L. Cutting edge: selective usage of chemokine receptors by plasmacytoid dendritic cells. J. Immunol. 167, 1862–1866 (2001).

    CAS  PubMed  Google Scholar 

  48. Krug, A. et al. IFN-producing cells respond to CXCR3 ligands in the presence of CXCL12 and secrete inflammatory chemokines upon activation. J. Immunol. 169, 6079–6083 (2002).

    CAS  PubMed  Google Scholar 

  49. Bai, Z. et al. CXC chemokine ligand 12 promotes CCR7-dependent naive T cell trafficking to lymph nodes and Peyer’s patches. J. Immunol. 182, 1287–1295 (2009).

    CAS  PubMed  Google Scholar 

  50. Umemoto, E. et al. Constitutive plasmacytoid dendritic cell migration to the splenic white pulp is cooperatively regulated by CCR7- and CXCR4-mediated signaling. J. Immunol. 189, 191–199 (2012).

    CAS  PubMed  Google Scholar 

  51. Cecchinato, V., D’Agostino, G., Raeli, L. & Uguccioni, M. Chemokine interaction with synergy-inducing molecules: fine tuning modulation of cell trafficking. J. Leukoc. Biol. 99, 851–855 (2016).

    CAS  PubMed  Google Scholar 

  52. Mellado, M. et al. Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. Embo. J. 20, 2497–2507 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Majumdar, R., Sixt, M. & Parent, C. A. New paradigms in the establishment and maintenance of gradients during directed cell migration. Curr. Opin. Cell. Biol. 30, 33–40 (2014).

    CAS  PubMed  Google Scholar 

  54. Sozzani, S. & Del Prete, A. Chemokines as relay signals in human dendritic cell migration: serum amyloid A kicks off chemotaxis. Eur. J. Immunol. 45, 40–43 (2015).

    CAS  PubMed  Google Scholar 

  55. Chou, R. C. et al. Lipid-cytokine-chemokine cascade drives neutrophil recruitment in a murine model of inflammatory arthritis. Immunity 33, 266–278 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lammermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498, 371–375 (2013).

    PubMed  Google Scholar 

  57. Chen, K. et al. Signal relay by CC chemokine receptor 2 (CCR2) and formylpeptide receptor 2 (Fpr2) in the recruitment of monocyte-derived dendritic cells in allergic airway inflammation. J. Biol. Chem. 288, 16262–16273 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Salogni, L. et al. Activin A induces dendritic cell migration through the polarized release of CXC chemokine ligands 12 and 14. Blood 113, 5848–5856 (2009).

    CAS  PubMed  Google Scholar 

  59. Gouwy, M. et al. Serum amyloid A chemoattracts immature dendritic cells and indirectly provokes monocyte chemotaxis by induction of cooperating CC and CXC chemokines. Eur. J. Immunol. 45, 101–112 (2015).

    CAS  PubMed  Google Scholar 

  60. Hjorto, G. M. et al. Differential CCR7 targeting in dendritic cells by three naturally occurring CC-chemokines. Front. Immunol. 7, 568 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. Bachelerie, F. et al. International union of basic and clinical pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev. 66, 1–79 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Bachelerie, F. et al. New nomenclature for atypical chemokine receptors. Nat. Immunol. 15, 207–208 (2014).

    CAS  PubMed  Google Scholar 

  63. McKimmie, C. S. et al. An analysis of the function and expression of D6 on lymphatic endothelial cells. Blood 121, 3768–3777 (2013).

    CAS  PubMed  Google Scholar 

  64. Liu, L. et al. Cutting edge: the silent chemokine receptor D6 is required for generating T-cell responses that mediate experimental autoimmune encephalomyelitis. J. Immunol. 177, 17–21 (2006).

    CAS  PubMed  Google Scholar 

  65. Hansell, C. A. et al. The atypical chemokine receptor ACKR2 suppresses Th17 responses to protein autoantigens. Immunol. Cell. Biol. 93, 167–176 (2015).

    CAS  PubMed  Google Scholar 

  66. Del Prete, A., Bonecchi, R., Vecchi, A., Mantovani, A. & Sozzani, S. CCRL2, a fringe member of the atypical chemoattractant receptor family. Eur. J. Immunol. 43, 1418–1422 (2013).

    PubMed  Google Scholar 

  67. Otero, K. et al. Nonredundant role of CCRL2 in lung dendritic cell trafficking. Blood 116, 2942–2949 (2010).

    CAS  PubMed  Google Scholar 

  68. Del Prete, A. et al. The atypical receptor CCRL2 is required for CXCR2-dependent neutrophil recruitment and tissue damage. Blood 130, 1223–1234 (2017).

    PubMed  Google Scholar 

  69. Monnier, J. et al. Expression, regulation, and function of atypical chemerin receptor CCRL2 on endothelial cells. J. Immunol. 189, 956–967 (2012).

    CAS  PubMed  Google Scholar 

  70. Gonzalvo-Feo, S. et al. Endothelial cell-derived chemerin promotes dendritic cell transmigration. J. Immunol. 192, 2366–2373 (2014).

    CAS  PubMed  Google Scholar 

  71. Sozzani, S. et al. Migration of dendritic cells in response to formyl peptides, C5a, and a distinct set of chemokines. J. Immunol. 155, 3292–3295 (1995).

    CAS  PubMed  Google Scholar 

  72. Chen, K. et al. The formylpeptide receptor 2 (Fpr2) and its endogenous ligand cathelin-related antimicrobial peptide (CRAMP) promote dendritic cell maturation. J. Biol. Chem. 289, 17553–17563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dumitriu, I. E., Bianchi, M. E., Bacci, M., Manfredi, A. A. & Rovere-Querini, P. The secretion of HMGB1 is required for the migration of maturing dendritic cells. J. Leukoc. Biol. 81, 84–91 (2007).

    CAS  PubMed  Google Scholar 

  74. Morelli, A., Larregina, A., Chuluyan, I., Kolkowski, E. & Fainboim, L. Expression and modulation of C5a receptor (CD88) on skin dendritic cells. Chemotactic effect of C5a on skin migratory dendritic cells. Immunology 89, 126–134 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gutzmer, R. et al. Human plasmacytoid dendritic cells express receptors for anaphylatoxins C3a and C5a and are chemoattracted to C3a and C5a. J. Invest. Dermatol. 126, 2422–2429 (2006).

    CAS  PubMed  Google Scholar 

  76. Liu, S. et al. Complement C1q chemoattracts human dendritic cells and enhances migration of mature dendritic cells to CCL19 via activation of AKT and MAPK pathways. Mol. Immunol. 46, 242–249 (2008).

    CAS  PubMed  Google Scholar 

  77. Vegh, Z., Kew, R. R., Gruber, B. L. & Ghebrehiwet, B. Chemotaxis of human monocyte-derived dendritic cells to complement component C1q is mediated by the receptors gC1qR and cC1qR. Mol. Immunol. 43, 1402–1407 (2006).

    CAS  PubMed  Google Scholar 

  78. Idzko, M. et al. Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors. Blood 100, 925–932 (2002).

    CAS  PubMed  Google Scholar 

  79. Ring, S. et al. Regulatory T cell-derived adenosine induces dendritic cell migration through the Epac-Rap1 pathway. J. Immunol. 194, 3735–3744 (2015).

    CAS  PubMed  Google Scholar 

  80. Li, X. et al. Plasmin triggers chemotaxis of monocyte-derived dendritic cells through an Akt2-dependent pathway and promotes a T-helper type-1 response. Arterioscler. Thromb. Vasc. Biol. 30, 582–590 (2010).

    PubMed  Google Scholar 

  81. Sozzani, S. et al. Human monocyte-derived and CD34 + cell-derived dendritic cells express functional receptors for platelet activating factor. FEBS Lett. 418, 98–100 (1997).

    CAS  PubMed  Google Scholar 

  82. Angeli, V. et al. Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity 21, 561–574 (2004).

    CAS  PubMed  Google Scholar 

  83. Robbiani, D. F. et al. The leukotriene C(4) transporter MRP1 regulates CCL19 (MIP-3beta, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell 103, 757–768 (2000).

    CAS  PubMed  Google Scholar 

  84. Legler, D. F., Krause, P., Scandella, E., Singer, E. & Groettrup, M. Prostaglandin E2 is generally required for human dendritic cell migration and exerts its effect via EP2 and EP4 receptors. J. Immunol. 176, 966–973 (2006).

    CAS  PubMed  Google Scholar 

  85. Sawada, Y. et al. Resolvin E1 inhibits dendritic cell migration in the skin and attenuates contact hypersensitivity responses. J. Exp. Med. 212, 1921–1930 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Gatto, D. et al. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat. Immunol. 14, 446–453 (2013).

    CAS  PubMed  Google Scholar 

  87. Czeloth, N. et al. Sphingosine-1 phosphate signaling regulates positioning of dendritic cells within the spleen. J. Immunol. 179, 5855–5863 (2007).

    CAS  PubMed  Google Scholar 

  88. Lamana, A. et al. CD69 modulates sphingosine-1-phosphate-induced migration of skin dendritic cells. J. Invest. Dermatol. 131, 1503–1512 (2011).

    CAS  PubMed  Google Scholar 

  89. Wittamer, V. et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198, 977–985 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Vermi, W. et al. Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J. Exp. Med. 201, 509–515 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. De Palma, G. et al. The possible role of ChemR23/Chemerin axis in the recruitment of dendritic cells in lupus nephritis. Kidney Int. 79, 1228–1235 (2011).

    PubMed  Google Scholar 

  92. Parolini, S. et al. The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood 109, 3625–3632 (2007).

    CAS  PubMed  Google Scholar 

  93. Albanesi, C. et al. Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. J. Exp. Med. 206, 249–258 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Skrzeczynska-Moncznik, J. et al. Potential role of chemerin in recruitment of plasmacytoid dendritic cells to diseased skin. Biochem. Biophys. Res. Commun. 380, 323–327 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Seeger, P., Musso, T. & Sozzani, S. The TGF-beta superfamily in dendritic cell biology. Cytokine Growth Factor. Rev. 26, 647–657 (2015).

    CAS  PubMed  Google Scholar 

  96. Gutzmer, R. et al. Human dendritic cells express the IL-18R and are chemoattracted to IL-18. J. Immunol. 171, 6363–6371 (2003).

    CAS  PubMed  Google Scholar 

  97. Kaser, A. et al. Interleukin-18 attracts plasmacytoid dendritic cells (DC2s) and promotes Th1 induction by DC2s through IL-18 receptor expression. Blood 103, 648–655 (2004).

    CAS  PubMed  Google Scholar 

  98. Teijeira, A., Russo, E. & Halin, C. Taking the lymphatic route: dendritic cell migration to draining lymph nodes. Semin. Immunopathol. 36, 261–274 (2014).

    CAS  PubMed  Google Scholar 

  99. Weinstock, M., Rosenblatt, J. & Avigan, D. Dendritic cell therapies for hematologic malignancies. Mol. Ther. Methods Clin. Dev. 5, 66–75 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Seyfizadeh, N., Muthuswamy, R., Mitchell, D. A. & Nierkens, S. Migration of dendritic cells to the lymph nodes and its enhancement to drive anti-tumor responses. Crit. Rev. Oncol. Hematol. 107, 100–110 (2016).

    PubMed  Google Scholar 

  101. Fiorina, P. et al. Characterization of donor dendritic cells and enhancement of dendritic cell efflux with CC-chemokine ligand 21: a novel strategy to prolong islet allograft survival. Diabetes 56, 912–920 (2007).

    CAS  PubMed  Google Scholar 

  102. Ziegler, E. et al. CCL19-IgG prevents allograft rejection by impairment of immune cell trafficking. J. Am. Soc. Nephrol. 17, 2521–2532 (2006).

    CAS  PubMed  Google Scholar 

  103. Del Prete, A. et al. Defective dendritic cell migration and activation of adaptive immunity in PI3Kgamma-deficient mice. Embo. J. 23, 3505–3515 (2004).

    PubMed  PubMed Central  Google Scholar 

  104. See P. et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 356, 6342 (2017).

    Google Scholar 

  105. Rose, C. E. Jr et al. Murine lung eosinophil activation and chemokine production in allergic airway inflammation. Cell. Mol. Immunol. 7, 361–374 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Baba, T., Nakamoto, Y. & Mukaida, N. Crucial contribution of thymic Sirp alpha + conventional dendritic cells to central tolerance against blood-borne antigens in a CCR2-dependent manner. J. Immunol. 183, 3053–3063 (2009).

    CAS  PubMed  Google Scholar 

  107. Le Borgne, M. et al. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8 + T cell crosspriming in vivo. Immunity 24, 191–201 (2006).

    PubMed  Google Scholar 

  108. Cook, D. N. et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495–503 (2000).

    CAS  PubMed  Google Scholar 

  109. Leon, B. et al. Regulation of T(H)2 development by CXCR5 + dendritic cells and lymphotoxin-expressing B cells. Nat. Immunol. 13, 681–690 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Bradford B. M., Reizis B., & Mabbott N. A. Oral prion disease pathogenesis is impeded in the specific absence of CXCR5-expressing dendritic cells. J. Virol. 91, 10 (2017).

    Google Scholar 

  111. Dorner, B. G. et al. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+T cells. Immunity 31, 823–833 (2009).

    CAS  PubMed  Google Scholar 

  112. Lei, Y. et al. Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J. Exp. Med. 208, 383–394 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ohta, T. et al. Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis. Sci. Rep. 6, 23505 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Swiecki, M. et al. Microbiota induces tonic CCL2 systemic levels that control pDC trafficking in steady state. Mucosal Immunol. 10, 936–945 (2017).

    CAS  PubMed  Google Scholar 

  115. Sawai, C. M. et al. Transcription factor Runx2 controls the development and migration of plasmacytoid dendritic cells. J. Exp. Med. 210, 2151–2159 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Sisirak, V. et al. CCR6/CCR10-mediated plasmacytoid dendritic cell recruitment to inflamed epithelia after instruction in lymphoid tissues. Blood 118, 5130–5140 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Goubier, A. et al. Plasmacytoid dendritic cells mediate oral tolerance. Immunity 29, 464–475 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Mizuno, S. et al. CCR9 + plasmacytoid dendritic cells in the small intestine suppress development of intestinal inflammation in mice. Immunol. Lett. 146, 64–69 (2012).

    CAS  PubMed  Google Scholar 

  119. Hadeiba, H. et al. Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance. Immunity 36, 438–450 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kohara, H. et al. Development of plasmacytoid dendritic cells in bone marrow stromal cell niches requires CXCL12-CXCR4 chemokine signaling. Blood 110, 4153–4160 (2007).

    CAS  PubMed  Google Scholar 

  121. Seth, S. et al. CCR7 essentially contributes to the homing of plasmacytoid dendritic cells to lymph nodes under steady-state as well as inflammatory conditions. J. Immunol. 186, 3364–3372 (2011).

    CAS  PubMed  Google Scholar 

  122. Yoneyama, H. et al. Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules. Int. Immunol. 16, 915–928 (2004).

    CAS  PubMed  Google Scholar 

  123. Vanbervliet, B. et al. Sequential involvement of CCR2 and CCR6 ligands for immature dendritic cell recruitment: possible role at inflamed epithelial surfaces. Eur. J. Immunol. 32, 231–242 (2002).

    CAS  PubMed  Google Scholar 

  124. Dieu, M. C. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 188, 373–386 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Cavarelli, M., Foglieni, C., Rescigno, M. & Scarlatti, G. R5 HIV-1 envelope attracts dendritic cells to cross the human intestinal epithelium and sample luminal virions via engagement of the CCR5. EMBO Mol. Med. 5, 776–794 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bachem, A. et al. Superior antigen cross-presentation and XCR1 expression define human CD11c + CD141 + cells as homologues of mouse CD8 + dendritic cells. J. Exp. Med. 207, 1273–1281 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen, S. C. et al. Expression of chemokine receptor CXCR3 by lymphocytes and plasmacytoid dendritic cells in human psoriatic lesions. Arch. Dermatol. Res. 302, 113–123 (2010).

    CAS  PubMed  Google Scholar 

  128. Sato, K. et al. CC chemokine receptors, CCR-1 and CCR-3, are potentially involved in antigen-presenting cell function of human peripheral blood monocyte-derived dendritic cells. Blood 93, 34–42 (1999).

    CAS  PubMed  Google Scholar 

  129. Beaulieu, S. et al. Expression of a functional eotaxin (CC chemokine ligand 11) receptor CCR3 by human dendritic cells. J. Immunol. 169, 2925–2936 (2002).

    CAS  PubMed  Google Scholar 

  130. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    CAS  PubMed  Google Scholar 

  131. Migeotte, I. et al. Identification and characterization of an endogenous chemotactic ligand specific for FPRL2. J. Exp. Med. 201, 83–93 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, C. et al. Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice. J. Clin. Invest. 118, 1165–1175 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by AIRC (Associazione Italiana Ricerca sul Cancro); IAP (Interuniversity Attraction Poles) 7–40 program; COST action BM1404 Mye-EUNITER; CARIPLO; and Ministero Salute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvano Sozzani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiberio, L., Del Prete, A., Schioppa, T. et al. Chemokine and chemotactic signals in dendritic cell migration. Cell Mol Immunol 15, 346–352 (2018). https://doi.org/10.1038/s41423-018-0005-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0005-3

This article is cited by

Search

Quick links