Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Life, death and autophagy

Abstract

Autophagy influences cell survival through maintenance of cell bioenergetics and clearance of protein aggregates and damaged organelles. Several lines of evidence indicate that autophagy is a multifaceted regulator of cell death, but controversy exists over whether autophagy alone can drive cell death under physiologically relevant circumstances. Here, we review the role of autophagy in cell death and examine how autophagy interfaces with other forms of cell death including apoptosis and necrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Autophagic cell death in development.
Fig. 2: Autophagy is at the interface of various forms of cell death.
Fig. 3: Autophagy, cell recognition and cell engulfment.

Similar content being viewed by others

References

  1. Green, D. R. & Llambi, F. Cell death signalling. Cold Spring Harb. Perspect. Biol. 7, a006080 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25, 486–541 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459–470 (2002).

    CAS  PubMed  Google Scholar 

  5. De Duve, C. & Wattiaux, R. Functions of lysosomes. Annu. Rev. Physiol. 28, 435–492 (1966).

    PubMed  Google Scholar 

  6. Proskuryakov, S. Y., Konoplyannikov, A. G. & Gabai, V. L. Necrosis: a specific form of programmed cell death? Exp. Cell Res. 283, 1–16 (2003).

    CAS  PubMed  Google Scholar 

  7. Denton, D., Nicolson, S. & Kumar, S. Cell death by autophagy: facts and apparent artefacts. Cell Death Differ. 19, 87–95 (2012).

    CAS  PubMed  Google Scholar 

  8. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    CAS  PubMed  Google Scholar 

  9. Thumm, M. et al. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 349, 275–280 (1994).

    CAS  PubMed  Google Scholar 

  10. Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169–174 (1993).

    CAS  PubMed  Google Scholar 

  11. Russell, R. C. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15, 741–750 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    CAS  PubMed  Google Scholar 

  13. Mizushima, N., Noda, T. & Ohsumi, Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J. 18, 3888–3896 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kirisako, T. et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol. 147, 435–446 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang, W. P., Scott, S. V., Kim, J. & Klionsky, D. J. The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J. Biol. Chem. 275, 5845–5851 (2000).

    CAS  PubMed  Google Scholar 

  16. Lang, T. et al. Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. EMBO J. 17, 3597–3607 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).

    CAS  PubMed  Google Scholar 

  18. Ohsumi, Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2, 211–216 (2001).

    CAS  PubMed  Google Scholar 

  19. Glick, D., Barth, S. & Macleod, K. F. Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3–12 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu, L., Chen, Y. & Tooze, S. A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy 14, 207–215 (2018).

    CAS  PubMed  Google Scholar 

  21. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    CAS  PubMed  Google Scholar 

  22. Kroemer, G. & Levine, B. Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9, 1004–1010 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Boya, P. et al. Inhibition of macroautophagy triggers apoptosis. Mol. Cell Biol. 25, 1025–1040 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tanaka, Y. et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406, 902–906 (2000).

    CAS  PubMed  Google Scholar 

  25. Zhu, H. et al. The fusion of autophagosome with lysosome is impaired in L-arginine-induced acute pancreatitis. Int. J. Clin. Exp Pathol. 8, 11164–11170 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gonzalez-Polo, R. A. et al. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J. Cell Sci. 118, 3091–3102 (2005).

    CAS  PubMed  Google Scholar 

  27. Schweichel, J. U. & Merker, H. J. The morphology of various types of cell death in prenatal tissues. Teratology 7, 253–266 (1973).

    CAS  PubMed  Google Scholar 

  28. Fulda, S. & Kogel, D. Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy. Oncogene 34, 5105–5113 (2015).

    CAS  PubMed  Google Scholar 

  29. Xu, T., Nicolson, S., Denton, D. & Kumar, S. Distinct requirements of autophagy-related genes in programmed cell death. Cell Death Differ. 22, 1792–1802 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Das, G., Shravage, B. V. & Baehrecke, E. H. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb Perspect. Biol. 4, a008813 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Neufeld, T. P. & Baehrecke, E. H. Eating on the fly: function and regulation of autophagy during cell growth, survival and death in Drosophila. Autophagy 4, 557–562 (2008).

    CAS  PubMed  Google Scholar 

  32. Zhang, H. & Baehrecke, E. H. Eaten alive: novel insights into autophagy from multicellular model systems. Trends Cell Biol. 25, 376–387 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. Anding, A. L. & Baehrecke, E. H. Autophagy in cell life and cell death. Curr. Top. Dev. Biol. 114, 67–91 (2015).

    CAS  PubMed  Google Scholar 

  34. Zhao, Z. et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4, 458–469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller, B. C. et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4, 309–314 (2008).

    CAS  PubMed  Google Scholar 

  36. Subramani, S. & Malhotra, V. Non-autophagic roles of autophagy-related proteins. EMBO Rep. 14, 143–151 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cadwell, K. & Debnath, J. Beyond self-eating: The control of nonautophagic functions and signaling pathways by autophagy-related proteins. J. Cell Biol. 217, 813–822 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Codogno, P., Mehrpour, M. & Proikas-Cezanne, T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol. 13, 7–12 (2011).

    PubMed  Google Scholar 

  39. Scarlatti, F., Maffei, R., Beau, I., Ghidoni, R. & Codogno, P. Non-canonical autophagy: an exception or an underestimated form of autophagy? Autophagy 4, 1083–1085 (2008).

    CAS  PubMed  Google Scholar 

  40. Fuchs, Y. & Steller, H. Programmed cell death in animal development and disease. Cell 147, 742–758 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nezis, I. P., Vaccaro, M. I., Devenish, R. J. & Juhasz, G. Autophagy in development, cell differentiation, and homeodynamics: from molecular mechanisms to diseases and pathophysiology. Biomed. Res. Int. 2014, 349623 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Jiang, C., Baehrecke, E. H. & Thummel, C. S. Steroid regulated programmed cell death during Drosophila metamorphosis. Development 124, 4673–4683 (1997).

    CAS  PubMed  Google Scholar 

  43. Martin, D. N. & Baehrecke, E. H. Caspases function in autophagic programmed cell death in Drosophila. Development 131, 275–284 (2004).

    CAS  PubMed  Google Scholar 

  44. Lee, C. Y., Simon, C. R., Woodard, C. T. & Baehrecke, E. H. Genetic mechanism for the stage- and tissue-specific regulation of steroid triggered programmed cell death in. Drosophila. Dev. Biol. 252, 138–148 (2002).

    CAS  PubMed  Google Scholar 

  45. Lee, C. Y., Cooksey, B. A. & Baehrecke, E. H. Steroid regulation of midgut cell death during Drosophila development. Dev. Biol. 250, 101–111 (2002).

    CAS  PubMed  Google Scholar 

  46. Berry, D. L. & Baehrecke, E. H. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131, 1137–1148 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gorski, S. M. et al. A SAGE approach to discovery of genes involved in autophagic cell death. Curr. Biol. 13, 358–363 (2003).

    CAS  PubMed  Google Scholar 

  48. Lee, C. Y. et al. Genome-wide analyses of steroid- and radiation-triggered programmed cell death in. Drosophila. Curr. Biol. 13, 350–357 (2003).

    CAS  PubMed  Google Scholar 

  49. Lee, C. Y. & Baehrecke, E. H. Steroid regulation of autophagic programmed cell death during development. Development 128, 1443–1455 (2001).

    CAS  PubMed  Google Scholar 

  50. Denton, D. et al. Autophagy, not apoptosis, is essential for midgut cell death in. Drosophila. Curr. Biol. 19, 1741–1746 (2009).

    CAS  PubMed  Google Scholar 

  51. Chang, T. K. et al. Uba1 functions in Atg7- and Atg3-independent autophagy. Nat. Cell Biol. 15, 1067–1078 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nezis, I. P. et al. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. J. Cell Biol. 190, 523–531 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gump, J. M. et al. Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat. Cell Biol. 16, 47–54 (2014).

    CAS  PubMed  Google Scholar 

  54. Hou, Y. C., Chittaranjan, S., Barbosa, S. G., McCall, K. & Gorski, S. M. Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis. J. Cell Biol. 182, 1127–1139 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Scherfer, C., Han, V. C., Wang, Y., Anderson, A. E. & Galko, M. J. Autophagy drives epidermal deterioration in a Drosophila model of tissue aging. Aging 5, 276–287 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. McPhee, C. K. & Baehrecke, E. H. Autophagy in Drosophila melanogaster. Biochim. Biophys. Acta 1793, 1452–1460 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Martin, D. N. et al. Proteomic analysis of steroid-triggered autophagic programmed cell death during Drosophila development. Cell Death Differ. 14, 916–923 (2007).

    CAS  PubMed  Google Scholar 

  58. McPhee, C. K. et al. Identification of factors that function in Drosophila salivary gland cell death during development using proteomics. Cell Death Differ. 20, 218–225 (2013).

    CAS  PubMed  Google Scholar 

  59. Batlevi, Y. et al. Dynein light chain 1 is required for autophagy, protein clearance, and cell death in Drosophila. Proc. Natl Acad. Sci. USA 107, 742–747 (2010).

    CAS  PubMed  Google Scholar 

  60. Nelson, C., Ambros, V. & Baehrecke, E. H. miR-14 regulates autophagy during developmental cell death by targeting ip3-kinase 2. Mol. Cell 56, 376–388 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dutta, S. & Baehrecke, E. H. Warts is required for PI3K-regulated growth arrest, autophagy, and autophagic cell death in Drosophila. Curr. Biol. 18, 1466–1475 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Denton, D. et al. UTX coordinates steroid hormone-mediated autophagy and cell death. Nat. Commun. 4, 2916 (2013).

    PubMed  Google Scholar 

  63. Ress, C., Holtmann, M., Maas, U., Sofsky, J. & Dorn, A. 20-Hydroxyecdysone-induced differentiation and apoptosis in the Drosophila cell line, l(2)mbn. Tissue Cell 32, 464–477 (2000).

    CAS  PubMed  Google Scholar 

  64. Tracy, K., Velentzas, P. D. & Baehrecke, E. H. Ral GTPase and the exocyst regulate autophagy in a tissue-specific manner. EMBO Rep. 17, 110–121 (2016).

    CAS  PubMed  Google Scholar 

  65. McPhee, C. K., Logan, M. A., Freeman, M. R. & Baehrecke, E. H. Activation of autophagy during cell death requires the engulfment receptor Draper. Nature 465, 1093–1096 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lin, L. et al. Complement-related regulates autophagy in neighbouring cells. Cell 170, 158–171 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. McPhee, C. K. & Baehrecke, E. H. The engulfment receptor Draper is required for autophagy during cell death. Autophagy 6, 1192–1193 (2010).

    PubMed  PubMed Central  Google Scholar 

  68. Anding, A. L. et al. Vps13D encodes a ubiquitin-binding protein that is required for the regulation of mitochondrial size and clearance. Curr. Biol. 28, 287–295 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Seong, E. et al. Mutations in VPS13D lead to a new recessive ataxia with spasticity and mitochondrial defects. Ann. Neurol. 83, 1075–1088 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gauthier, J. et al. Recessive mutations in >VPS13D cause childhood onset movement disorders. Ann. Neurol. 83, 1089–1095 (2018).

    CAS  PubMed  Google Scholar 

  71. Santhanam, A. et al. Ecdysone-induced receptor tyrosine phosphatase PTP52F regulates Drosophila midgut histolysis by enhancement of autophagy and apoptosis. Mol. Cell Biol. 34, 1594–1606 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Dasari, S. K. et al. Death by over-eating: the Gaucher disease associated gene GBA1, identified in a screen for mediators of autophagic cell death, is necessary for developmental cell death in Drosophila midgut. Cell Cycle 16, 2003–2010 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Arakawa, S. et al. Role of Atg5-dependent cell death in the embryonic development of Bax/Bak double-knockout mice. Cell Death Differ. 24, 1598–1608 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Imagawa, Y., Saitoh, T. & Tsujimoto, Y. Vital staining for cell death identifies Atg9a-dependent necrosis in developmental bone formation in mouse. Nat. Commun. 7, 13391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Shimizu, S. et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat. Cell Biol. 6, 1221–1228 (2004).

    CAS  PubMed  Google Scholar 

  76. Reef, S. et al. A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. Mol. Cell 22, 463–475 (2006).

    CAS  PubMed  Google Scholar 

  77. Yu, S. W. et al. Autophagic death of adult hippocampal neural stem cells following insulin withdrawal. Stem Cells 26, 2602–2610 (2008).

    CAS  PubMed  Google Scholar 

  78. Xie, C. et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy 12, 410–423 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yamaguchi, T. et al. The CCR4-NOT deadenylase complex controls Atg7-dependent cell death and heart function. Sci Signal 11, eaan3638 (2018).

    PubMed  Google Scholar 

  80. Rojas-Rios, P. et al. Translational control of autophagy by orb in the Drosophila germline. Dev. Cell 35, 622–631 (2015).

    CAS  PubMed  Google Scholar 

  81. Liu, Y. et al. Autosis is a Na+, K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl Acad. Sci. USA 110, 20364–20371 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang, G., Luk, B. T., Hamidy, M., Zhang, L. & Spector, S. A. Induction of a Na+/K+-ATPase-dependent form of autophagy triggers preferential cell death of human immunodeficiency virus type-1-infected macrophages. Autophagy 2018, 1–17 (2018).

    Google Scholar 

  83. Elgendy, M., Sheridan, C., Brumatti, G. & Martin, S. J. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol. Cell 42, 23–35 (2011).

    CAS  PubMed  Google Scholar 

  84. Byun, J. Y. et al. The Rac1/MKK7/JNK pathway signals upregulation of Atg5 and subsequent autophagic cell death in response to oncogenic Ras. Carcinogenesis 30, 1880–1888 (2009).

    CAS  PubMed  Google Scholar 

  85. Byun, J. Y. et al. Oncogenic Ras signals through activation of both phosphoinositide 3-kinase and Rac1 to induce c-Jun NH2-terminal kinase-mediated, caspase-independent cell death. Mol. Cancer Res. 7, 1534–1542 (2009).

    CAS  PubMed  Google Scholar 

  86. Chen, Y., McMillan-Ward, E., Kong, J., Israels, S. J. & Gibson, S. B. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ. 15, 171–182 (2008).

    CAS  PubMed  Google Scholar 

  87. Liao, G. et al. Phycocyanin inhibits tumorigenic potential of pancreatic cancer cells: role of apoptosis and autophagy. Sci. Rep. 6, 34564 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Azad, M. B. et al. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4, 195–204 (2008).

    CAS  PubMed  Google Scholar 

  89. Yu, L. et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304, 1500–1502 (2004).

    CAS  PubMed  Google Scholar 

  90. Yu, L. et al. Autophagic programmed cell death by selective catalase degradation. Proc. Natl Acad. Sci. USA 103, 4952–4957 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425–1428 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, Z. et al. The autophagic degradation of Cav-1 contributes to PA-induced apoptosis and inflammation of astrocytes. Cell Death Dis 9, 771 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Thorburn, J. et al. Autophagy controls the kinetics and extent of mitochondrial apoptosis by regulating PUMA levels. Cell Rep. 7, 45–52 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Jiang, K. et al. Autophagic degradation of FOXO3a represses the expression of PUMA to block cell apoptosis in cisplatin-resistant osteosarcoma cells. Am. J. Cancer Res. 7, 1407–1422 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Young, M. M. et al. Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J. Biol. Chem. 287, 12455–12468 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Basit, F., Cristofanon, S. & Fulda, S. Obatoclax (GX15–070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ. 20, 1161–1173 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sakamaki, J. I. & Ryan, K. M. Autophagy Determines the Path on the TRAIL to Death. Dev. Cell 37, 291–293 (2016).

    CAS  PubMed  Google Scholar 

  98. Goodall, M. L. et al. The autophagy machinery controls cell death switching between apoptosis and necroptosis. Dev. Cell 37, 337–349 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yousefi, S. et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol. 8, 1124–1132 (2006).

    CAS  PubMed  Google Scholar 

  100. Zhu, Y. et al. Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell 1, 468–477 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wirawan, E. et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 1, e18 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Betin, V. M. & Lane, J. D. Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J. Cell Sci. 122, 2554–2566 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Radoshevich, L. et al. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 142, 590–600 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Szondy, Z., Sarang, Z., Kiss, B., Garabuczi, E. & Koroskenyi, K. Anti-inflammatory mechanisms triggered by apoptotic cells during their clearance. Front. Immunol. 8, 909 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. Green, D. R., Oguin, T. H. & Martinez, J. The clearance of dying cells: table for two. Cell Death Differ. 23, 915–926 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Qu, X. et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128, 931–946 (2007).

    CAS  PubMed  Google Scholar 

  107. Mellen, M. A., de la Rosa, E. J. & Boya, P. The autophagic machinery is necessary for removal of cell corpses from the developing retinal neuroepithelium. Cell Death Differ. 15, 1279–1290 (2008).

    CAS  PubMed  Google Scholar 

  108. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    CAS  PubMed  Google Scholar 

  109. Ko, A. et al. Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ. 21, 92–99 (2014).

    CAS  PubMed  Google Scholar 

  110. Konishi, A., Arakawa, S., Yue, Z. & Shimizu, S. Involvement of Beclin 1 in engulfment of apoptotic cells. J. Biol. Chem. 287, 13919–13929 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Huang, S., Jia, K., Wang, Y., Zhou, Z. & Levine, B. Autophagy genes function in apoptotic cell corpse clearance during C. elegans embryonic development. Autophagy 9, 138–149 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ruck, A. et al. The Atg6/Vps30/Beclin 1 ortholog BEC-1 mediates endocytic retrograde transport in addition to autophagy in C. elegans. Autophagy 7, 386–400 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, W. et al. Autophagy genes function sequentially to promote apoptotic cell corpse degradation in the engulfing cell. J. Cell Biol. 197, 27–35 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Singh, S. R. et al. The lipolysis pathway sustains normal and transformed stem cells in adult Drosophila. Nature 538, 109–113 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sanjuan, M. A., Milasta, S. & Green, D. R. Toll-like receptor signaling in the lysosomal pathways. Immunol. Rev. 227, 203–220 (2009).

    CAS  PubMed  Google Scholar 

  116. Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).

    CAS  PubMed  Google Scholar 

  117. Martinez, J. et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl Acad. Sci. USA 108, 17396–17401 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim, S. E. & Overholtzer, M. Autophagy proteins regulate cell engulfment mechanisms that participate in cancer. Semin. Cancer Biol. 23, 329–336 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893–906 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Huang, J. et al. Activation of antibacterial autophagy by NADPH oxidases. Proc. Natl Acad. Sci. USA 106, 6226–6231 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ma, J., Becker, C., Lowell, C. A. & Underhill, D. M. Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens. J. Biol. Chem. 287, 34149–34156 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Romao, S. et al. Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. J. Cell Biol. 203, 757–766 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Florey, O., Kim, S. E., Sandoval, C. P., Haynes, C. M. & Overholtzer, M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat. Cell Biol. 13, 1335–1343 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    CAS  PubMed  Google Scholar 

  125. Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science 306, 1037–1040 (2004).

    CAS  PubMed  Google Scholar 

  126. Overholtzer, M. et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966–979 (2007).

    CAS  PubMed  Google Scholar 

  127. Sun, Q., Cibas, E. S., Huang, H., Hodgson, L. & Overholtzer, M. Induction of entosis by epithelial cadherin expression. Cell Res. 24, 1288–1298 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang, M. et al. Impaired formation of homotypic cell-in-cell structures in human tumor cells lacking alpha-catenin expression. Sci. Rep. 5, 12223 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hamann, J. C. et al. Entosis is induced by glucose starvation. Cell Rep. 20, 201–210 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Sun, L. et al. TM9SF4 is a novel factor promoting autophagic flux under amino acid starvation. Cell Death Differ. 25, 368–379 (2018).

    CAS  PubMed  Google Scholar 

  131. Bergeret, E. et al. TM9SF4 is required for Drosophila cellular immunity via cell adhesion and phagocytosis. J. Cell Sci. 121, 3325–3334 (2008).

    CAS  PubMed  Google Scholar 

  132. Cornillon, S. et al. Phg1p is a nine-transmembrane protein superfamily member involved in dictyostelium adhesion and phagocytosis. J. Biol. Chem. 275, 34287–34292 (2000).

    CAS  PubMed  Google Scholar 

  133. Lozupone, F. et al. TM9SF4 is a novel V-ATPase-interacting protein that modulates tumor pH alterations associated with drug resistance and invasiveness of colon cancer cells. Oncogene 34, 5163–5174 (2015).

    CAS  PubMed  Google Scholar 

  134. Lozupone, F. et al. The human homologue of Dictyostelium discoideum phg1A is expressed by human metastatic melanoma cells. EMBO Rep. 10, 1348–1354 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric H. Baehrecke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doherty, J., Baehrecke, E.H. Life, death and autophagy. Nat Cell Biol 20, 1110–1117 (2018). https://doi.org/10.1038/s41556-018-0201-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-018-0201-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing