Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

mTOR as a central hub of nutrient signalling and cell growth

Abstract

The highly conserved protein kinase mechanistic target of rapamycin (mTOR; originally known as mammalian target of rapamycin) is a central cell growth regulator connecting cellular metabolism and growth with a wide range of environmental inputs as part of mTOR complex 1 (mTORC1) and mTORC2. In this Review, we introduce the landmark discoveries in the mTOR field, starting from the isolation of rapamycin to the molecular characterizations of key components of the mTORC signalling network with an emphasis on amino acid sensing, and discuss the perspectives of mTORC inhibitors in therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of some of the historical landmark discoveries in the mTOR field.
Fig. 2: Molecular composition and upstream regulators of mTORC1 and mTORC2.
Fig. 3: mTORC1 and amino acid signalling network.

Similar content being viewed by others

References

  1. Sabatini, D. M. Twenty-five years of mTOR: uncovering the link from nutrients to growth. Proc. Natl Acad. Sci. USA 114, 11818–11825 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Vezina, C., Kudelski, A. & Sehgal, S. N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 28, 721–726 (1975).

    CAS  Google Scholar 

  3. Baker, H., Sidorowicz, A., Sehgal, S. N. & Vezina, C. Rapamycin (AY-22,989), a new antifungal antibiotic. III. In vitro and in vivo evaluation. J. Antibiot. 31, 539–545 (1978).

    CAS  Google Scholar 

  4. Douros, J. & Suffness, M. New antitumor substances of natural origin. Cancer Treat. Rev. 8, 63–87 (1981).

    CAS  PubMed  Google Scholar 

  5. Eng, C. P., Sehgal, S. N. & Vezina, C. Activity of rapamycin (AY-22,989) against transplanted tumors. J. Antibiot. 37, 1231–1237 (1984).

    CAS  Google Scholar 

  6. Sehgal, S. N. & Bansbach, C. C. Rapamycin: in vitro profile of a new immunosuppressive macrolide. Ann. NY Acad. Sci. 685, 58–67 (1993).

    CAS  PubMed  Google Scholar 

  7. Dumont, F. J., Staruch, M. J., Koprak, S. L., Melino, M. R. & Sigal, N. H. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J. Immunol. 144, 251–258 (1990).

    CAS  PubMed  Google Scholar 

  8. Dumont, F. J. et al. The immunosuppressive macrolides FK-506 and rapamycin act as reciprocal antagonists in murine T cells. J. Immunol. 144, 1418–1424 (1990).

    CAS  PubMed  Google Scholar 

  9. Schreiber, S. L. Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251, 283–287 (1991).

    CAS  PubMed  Google Scholar 

  10. Heitman, J., Movva, N. R. & Hall, M. N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905–909 (1991).

    CAS  PubMed  Google Scholar 

  11. Heitman, J., Movva, N. R., Hiestand, P. C. & Hall, M. N. FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 88, 1948–1952 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Koltin, Y. et al. Rapamycin sensitivity in Saccharomyces cerevisiae is mediated by a peptidyl-prolyl cistrans isomerase related to human FK506-binding protein. Mol. Cell. Biol. 11, 1718–1723 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wiederrecht, G., Brizuela, L., Elliston, K., Sigal, N. H. & Siekierka, J. J. FKB1 encodes a nonessential FK 506-binding protein in Saccharomyces cerevisiae and contains regions suggesting homology to the cyclophilins. Proc. Natl Acad. Sci. USA 88, 1029–1033 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kunz, J. et al. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73, 585–596 (1993).

    CAS  PubMed  Google Scholar 

  15. Cafferkey, R. et al. Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol. Cell. Biol. 13, 6012–6023 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Stan, R. et al. Interaction between FKBP12–rapamycin and TOR involves a conserved serine residue. J. Biol. Chem. 269, 32027–32030 (1994).

    CAS  PubMed  Google Scholar 

  17. Zheng, X. F., Florentino, D., Chen, J., Crabtree, G. R. & Schreiber, S. L. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 82, 121–130 (1995).

    CAS  PubMed  Google Scholar 

  18. Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).

    CAS  PubMed  Google Scholar 

  19. Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin–receptor complex. Nature 369, 756–758 (1994).

    CAS  PubMed  Google Scholar 

  20. Chiu, M. I., Katz, H. & Berlin, V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc. Natl Acad. Sci. USA 91, 12574–12578 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sabers, C. J. et al. Isolation of a protein target of the FKBP12–rapamycin complex in mammalian cells. J. Biol. Chem. 270, 815–822 (1995).

    CAS  PubMed  Google Scholar 

  22. Singh, K., Sun, S. & Vezina, C. Rapamycin (AY-22,989), a new antifungal antibiotic. IV. Mechanism of action. J. Antibiot. 32, 630–645 (1979).

    CAS  Google Scholar 

  23. Beretta, L., Gingras, A. C., Svitkin, Y. V., Hall, M. N. & Sonenberg, N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 15, 658–664 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chung, J., Kuo, C. J., Crabtree, G. R. & Blenis, J. Rapamycin–FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell 69, 1227–1236 (1992).

    CAS  PubMed  Google Scholar 

  25. Kuo, C. J. et al. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 358, 70–73 (1992).

    CAS  PubMed  Google Scholar 

  26. Barbet, N. C. et al. TOR controls translation initiation and early G1 progression in yeast. Mol. Biol. Cell 7, 25–42 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, H., Stallock, J. P., Ng, J. C., Reinhard, C. & Neufeld, T. P. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 14, 2712–2724 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hentges, K. E. et al. FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse. Proc. Natl Acad. Sci. USA 98, 13796–13801 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiong, Y. & Sheen, J. Novel links in the plant TOR kinase signaling network. Curr. Opin. Plant Biol. 28, 83–91 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    CAS  PubMed  Google Scholar 

  31. Schmidt, A., Kunz, J. & Hall, M. N. TOR2 is required for organization of the actin cytoskeleton in yeast. Proc. Natl Acad. Sci. USA 93, 13780–13785 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457–468 (2002).

    CAS  PubMed  Google Scholar 

  33. Reinke, A. et al. TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J. Biol. Chem. 279, 14752–14762 (2004).

    CAS  PubMed  Google Scholar 

  34. Adami, A., Garcia-Alvarez, B., Arias-Palomo, E., Barford, D. & Llorca, O. Structure of TOR and its complex with KOG1. Mol. Cell 27, 509–516 (2007).

    CAS  PubMed  Google Scholar 

  35. Wullschleger, S., Loewith, R., Oppliger, W. & Hall, M. N. Molecular organization of target of rapamycin complex 2. J. Biol. Chem. 280, 30697–30704 (2005).

    CAS  PubMed  Google Scholar 

  36. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 169, 361–371 (2017).

    CAS  PubMed  Google Scholar 

  37. Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    CAS  PubMed  Google Scholar 

  38. Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002).

    CAS  PubMed  Google Scholar 

  39. Nojima, H. et al. The mammalian target of rapamycin (mTOR) partner, Raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J. Biol. Chem. 278, 15461–15464 (2003).

    CAS  PubMed  Google Scholar 

  40. Schalm, S. S., Fingar, D. C., Sabatini, D. M. & Blenis, J. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol. 13, 797–806 (2003).

    CAS  PubMed  Google Scholar 

  41. Sancak, Y. et al. The Rag GTPases bind Raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and Raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).

    CAS  PubMed  Google Scholar 

  43. Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6, 1122–1128 (2004).

    CAS  PubMed  Google Scholar 

  44. Yang, Q., Inoki, K., Ikenoue, T. & Guan, K. L. Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev. 20, 2820–2832 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Frias, M. A. et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 16, 1865–1870 (2006).

    CAS  PubMed  Google Scholar 

  46. Jacinto, E. et al. SIN1/MIP1 maintains Rictor–mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127, 125–137 (2006).

    CAS  PubMed  Google Scholar 

  47. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Aylett, C. H. et al. Architecture of human mTOR complex 1. Science 351, 48–52 (2016).

    CAS  PubMed  Google Scholar 

  49. Stuttfeld, E. et al. Architecture of the human mTORC2 core complex. eLife 7, e33101 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Yang, H. et al. mTOR kinase structure, mechanism and regulation. Nature 497, 217–223 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, X. et al. Cryo-EM structure of human mTOR complex 2. Cell Res. 28, 518–528 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Choo, A. Y., Yoon, S. O., Kim, S. G., Roux, P. P. & Blenis, J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc. Natl Acad. Sci. USA 105, 17414–17419 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kang, S. A. et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 341, 1236566 (2013).

    PubMed  PubMed Central  Google Scholar 

  54. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159–168 (2006).

    CAS  PubMed  Google Scholar 

  56. Holz, M. K., Ballif, B. A., Gygi, S. P. & Blenis, J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123, 569–580 (2005).

    CAS  PubMed  Google Scholar 

  57. Dorrello, N. V. et al. S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314, 467–471 (2006).

    CAS  PubMed  Google Scholar 

  58. Ma, X. M., Yoon, S. O., Richardson, C. J., Julich, K. & Blenis, J. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 133, 303–313 (2008).

    CAS  PubMed  Google Scholar 

  59. Brunn, G. J. et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277, 99–101 (1997).

    CAS  PubMed  Google Scholar 

  60. Gingras, A. C. et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13, 1422–1437 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    PubMed  PubMed Central  Google Scholar 

  62. Peterson, T. R. et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146, 408–420 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, G. et al. Post-transcriptional regulation of de novo lipogenesis by mTORC1–S6K1–SRPK2 signaling. Cell 171, 1545–1558 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the Rictor–mTOR complex. Science 307, 1098–1101 (2005).

    CAS  PubMed  Google Scholar 

  65. Garcia-Martinez, J. M. & Alessi, D. R. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem. J. 416, 375–385 (2008).

    CAS  PubMed  Google Scholar 

  66. Kim, S. J. et al. mTOR complex 2 regulates proper turnover of insulin receptor substrate-1 via the ubiquitin ligase subunit Fbw8. Mol. Cell 48, 875–887 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sengupta, S. et al. Regulation of OSR1 and the sodium, potassium, two chloride cotransporter by convergent signals. Proc. Natl Acad. Sci. USA 110, 18826–18831 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sciarretta, S. et al. mTORC2 regulates cardiac response to stress by inhibiting MST1. Cell Rep. 11, 125–136 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    CAS  PubMed  Google Scholar 

  70. Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259–1268 (2003).

    CAS  PubMed  Google Scholar 

  71. Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11, 1457–1466 (2003).

    CAS  PubMed  Google Scholar 

  72. Crino, P. B., Nathanson, K. L. & Henske, E. P. The tuberous sclerosis complex. N. Engl. J. Med. 355, 1345–1356 (2006).

    CAS  PubMed  Google Scholar 

  73. Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K. & Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15, 702–713 (2005).

    CAS  PubMed  Google Scholar 

  74. Yang, H. et al. Mechanisms of mTORC1 activation by Rheb and inhibition by PRAS40. Nature 552, 368–373 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol. Cell 10, 151–162 (2002).

    CAS  PubMed  Google Scholar 

  76. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648–657 (2002).

    CAS  PubMed  Google Scholar 

  77. Potter, C. J., Pedraza, L. G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4, 658–665 (2002).

    CAS  PubMed  Google Scholar 

  78. Menon, S. et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771–785 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Carroll, B. et al. Control of TSC2–Rheb signaling axis by arginine regulates mTORC1 activity. eLife 5, e11058 (2016).

    PubMed  PubMed Central  Google Scholar 

  80. Guertin, D. A. & Sabatini, D. M. An expanding role for mTOR in cancer. Trends Mol. Med 11, 353–361 (2005).

    CAS  PubMed  Google Scholar 

  81. Guertin, D. A. & Sabatini, D. M. Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007).

    CAS  PubMed  Google Scholar 

  82. Majumder, P. K. et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat. Med. 10, 594–601 (2004).

    CAS  PubMed  Google Scholar 

  83. Podsypanina, K. et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten± mice. Proc. Natl Acad. Sci. USA 98, 10320–10325 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sancak, Y. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903–915 (2007).

    CAS  PubMed  Google Scholar 

  85. Vander Haar, E., Lee, S. I., Bandhakavi, S., Griffin, T. J. & Kim, D. H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316–323 (2007).

    Google Scholar 

  86. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193 (2005).

    CAS  PubMed  Google Scholar 

  87. Roux, P. P., Ballif, B. A., Anjum, R., Gygi, S. P. & Blenis, J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl Acad. Sci. USA 101, 13489–13494 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955–968 (2006).

    CAS  PubMed  Google Scholar 

  89. Gwinn, D. M. et al. AMPK phosphorylation of Raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Roccio, M., Bos, J. L. & Zwartkruis, F. J. Regulation of the small GTPase Rheb by amino acids. Oncogene 25, 657–664 (2006).

    CAS  PubMed  Google Scholar 

  91. Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, K. L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935–945 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Dubouloz, F., Deloche, O., Wanke, V., Cameroni, E. & De Virgilio, C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell 19, 15–26 (2005).

    CAS  PubMed  Google Scholar 

  93. Gao, M. & Kaiser, C. A. A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat. Cell Biol. 8, 657–667 (2006).

    CAS  PubMed  Google Scholar 

  94. Efeyan, A. et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493, 679–683 (2013).

    CAS  PubMed  Google Scholar 

  95. Sancak, Y. et al. Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196–1208 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Stracka, D., Jozefczuk, S., Rudroff, F., Sauer, U. & Hall, M. N. Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J. Biol. Chem. 289, 25010–25020 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Jewell, J. L. et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 347, 194–198 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Li, L. et al. Regulation of mTORC1 by the Rab and Arf GTPases. J. Biol. Chem. 285, 19705–19709 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nicklin, P. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521–534 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Duran, R. V. et al. Glutaminolysis activates Rag–mTORC1 signaling. Mol. Cell 47, 349–358 (2012).

    CAS  PubMed  Google Scholar 

  102. Tan, H. W. S., Sim, A. Y. L. & Long, Y. C. Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation. Nat. Commun. 8, 338 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. Csibi, A. et al. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr. Biol. 24, 2274–2280 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334, 678–683 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kim, J. & Guan, K. L. Amino acid signaling in TOR activation. Annu. Rev. Biochem. 80, 1001–1032 (2011).

    CAS  PubMed  Google Scholar 

  106. Binda, M. et al. The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell 35, 563–573 (2009).

    CAS  PubMed  Google Scholar 

  107. Bar-Peled, L. et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Deng, L. et al. The ubiquitination of Rag A GTPase by RNF152 negatively regulates mTORC1 activation. Mol. Cell 58, 804–818 (2015).

    CAS  PubMed  Google Scholar 

  109. Jin, G. et al. Skp2-mediated RagA ubiquitination elicits a negative feedback to prevent amino-acid-dependent mTORC1 hyperactivation by recruiting GATOR1. Mol. Cell 58, 989–1000 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wolfson, R. L. et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature 543, 438–442 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Peng, M., Yin, N. & Li, M. O. SZT2 dictates GATOR control of mTORC1 signalling. Nature 543, 433–437 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kim, Y. M. et al. SH3BP4 is a negative regulator of amino acid–Rag GTPase–mTORC1 signaling. Mol. Cell 46, 833–846 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Tsun, Z. Y. et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 52, 495–505 (2013).

    CAS  PubMed  Google Scholar 

  114. Petit, C. S., Roczniak-Ferguson, A. & Ferguson, S. M. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J. Cell Biol. 202, 1107–1122 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Baba, M. et al. Kidney-targeted Birt–Hogg–Dube gene inactivation in a mouse model: Erk1/2 and Akt–mTOR activation, cell hyperproliferation, and polycystic kidneys. J. Natl Cancer Inst. 100, 140–154 (2008).

    CAS  PubMed  Google Scholar 

  116. Han, J. M. et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410–424 (2012).

    CAS  PubMed  Google Scholar 

  117. Bonfils, G. et al. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol. Cell 46, 105–110 (2012).

    CAS  PubMed  Google Scholar 

  118. He, X. D. et al. Sensing and transmitting intracellular amino acid signals through reversible lysine aminoacylations. Cell Metab. 27, 151–166 (2018).

    CAS  PubMed  Google Scholar 

  119. Wyant, G. A. et al. mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell 171, 642–654 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Jung, J., Genau, H. M. & Behrends, C. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol. Cell. Biol. 35, 2479–2494 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, S. et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188–194 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Rebsamen, M. et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519, 477–481 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Budanov, A. V. et al. Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene 21, 6017–6031 (2002).

    CAS  PubMed  Google Scholar 

  124. Budanov, A. V. & Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451–460 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chantranupong, L. et al. The sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep. 9, 1–8 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Parmigiani, A. et al. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep. 9, 1281–1291 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Saxton, R. A. et al. Structural basis for leucine sensing by the sestrin2–mTORC1 pathway. Science 351, 53–58 (2016).

    CAS  PubMed  Google Scholar 

  128. Wolfson, R. L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48 (2016).

    CAS  PubMed  Google Scholar 

  129. Chantranupong, L. et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165, 153–164 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Saxton, R. A., Chantranupong, L., Knockenhauer, K. E., Schwartz, T. U. & Sabatini, D. M. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature 536, 229–233 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Gu, X. et al. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 358, 813–818 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Jung, C. H. et al. ULK–Atg13–FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992–2003 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Yuan, H. X., Russell, R. C. & Guan, K. L. Regulation of PIK3C3/VPS34 complexes by mTOR in nutrient stress-induced autophagy. Autophagy 9, 1983–1995 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Pena-Llopis, S. et al. Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 30, 3242–3258 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. mTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–914 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Martina, J. A. & Puertollano, R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 200, 475–491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942–946 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Munson, M. J. et al. mTOR activates the VPS34–UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J. 34, 2272–2290 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Okosun, J. et al. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma. Nat. Genet. 48, 183–188 (2016).

    CAS  PubMed  Google Scholar 

  143. Nickerson, M. L. et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt–Hogg–Dube syndrome. Cancer Cell 2, 157–164 (2002).

    CAS  PubMed  Google Scholar 

  144. Grabiner, B. C. et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 4, 554–563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Kim, L. C., Cook, R. S. & Chen, J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene 36, 2191–2201 (2017).

    CAS  PubMed  Google Scholar 

  146. Hsieh, A. C. et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP–eIF4E. Cancer Cell 17, 249–261 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Hsieh, A. C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Alain, T. et al. eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Cancer Res. 72, 6468–6476 (2012).

    CAS  PubMed  Google Scholar 

  149. She, Q. B. et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 18, 39–51 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Benjamin, D., Colombi, M., Moroni, C. & Hall, M. N. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat. Rev. Drug Discov. 10, 868–880 (2011).

    CAS  PubMed  Google Scholar 

  151. Tabernero, J. et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J. Clin. Oncol. 26, 1603–1610 (2008).

    CAS  PubMed  Google Scholar 

  152. Palm, W. et al. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 162, 259–270 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Johnson, C. E. & Tee, A. R. Exploiting cancer vulnerabilities: mTOR, autophagy, and homeostatic imbalance. Essays Biochem. 61, 699–710 (2017).

    PubMed  Google Scholar 

  154. Rangwala, R. et al. Combined mTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10, 1391–1402 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023–8032 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Feldman, M. E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7, e38 (2009).

    PubMed  Google Scholar 

  157. Schenone, S., Brullo, C., Musumeci, F., Radi, M. & Botta, M. ATP-competitive inhibitors of mTOR: an update. Curr. Med. Chem. 18, 2995–3014 (2011).

    CAS  PubMed  Google Scholar 

  158. Zou, Z. Q. et al. A novel dual PI3Kα/mTOR inhibitor PI-103 with high antitumor activity in non-small cell lung cancer cells. Int. J. Mol. Med. 24, 97–101 (2009).

    CAS  PubMed  Google Scholar 

  159. Wagle, N. et al. Response and acquired resistance to everolimus in anaplastic thyroid cancer. N. Engl. J. Med. 371, 1426–1433 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. Fan, Q. et al. A kinase inhibitor targeted to mTORC1 drives regression in glioblastoma. Cancer Cell 31, 424–435 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Rodrik-Outmezguine, V. S. et al. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov. 1, 248–259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea grant funded by the Ministry of Education in Korea (no. 2015R1D1A1A01059401 and no. 2018R1D1A1B07048869 to J.K.) and by grants from the National Institutes of Health (GM51586, CA196878 and CA217642 to K.-L.G.). K.-L.G. is a co-founder and has an equity interest in Vivace Therapeutics, Inc. The terms of this arrangement have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joungmok Kim or Kun-Liang Guan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Guan, KL. mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol 21, 63–71 (2019). https://doi.org/10.1038/s41556-018-0205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-018-0205-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing