Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide discovery of epistatic loci affecting antibiotic resistance in Neisseria gonorrhoeae using evolutionary couplings

Abstract

Genome analysis should allow the discovery of interdependent loci that together cause antibiotic resistance. In practice, however, the vast number of possible epistatic interactions erodes statistical power. Here, we extend an approach that has been successfully used to identify epistatic residues in proteins to infer genomic loci that are strongly coupled. This approach reduces the number of tests required for an epistatic genome-wide association study of antibiotic resistance and increases the likelihood of identifying causal epistasis. We discovered 38 loci and 240 epistatic pairs that influence the minimum inhibitory concentrations of 5 different antibiotics in 1,102 isolates of Neisseria gonorrhoeae that were confirmed in a second dataset of 495 isolates. Many known resistance-affecting loci were recovered; however, the majority of associations occurred in unreported genes, such as murE. About half of the discovered epistasis involved at least one locus previously associated with antibiotic resistance, including interactions between gyrA and parC. Still, many combinations involved unreported loci and genes. While most variation in minimum inhibitory concentrations could be explained by identified loci, epistasis substantially increased explained phenotypic variance. Our work provides a systematic identification of epistasis affecting antibiotic resistance in N. gonorrhoeae and a generalizable approach for epistatic genome-wide association studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolutionary couplings power epistatic GWAS.
Fig. 2: MIC (mg l−1) for N. gonorrhoeae strains.
Fig. 3: Associations that occur in structural binding sites.
Fig. 4: Significant epistatic interactions affecting antibiotic resistance and sensitivity in N. gonorrhoeae.
Fig. 5: Occurrence of selected epistatic pairs across phylogenetic clades.

Similar content being viewed by others

Data availability

Measured MICs and NCBI SRA identifiers for the raw sequencing data can be found in Supplementary Table 1.

References

  1. Palmer, A. C. & Kishony, R. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nat. Rev. Genet. 14, 243–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Sousa, J. M., Balbontín, R., Durão, P. & Gordo, I. Multidrug-resistant bacteria compensate for the epistasis between resistances. PLoS Biol. 15, e2001741 (2017).

    Article  Google Scholar 

  3. Unemo, M. & Shafer, W. M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin. Microbiol. Rev. 27, 587–613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cui, Y. et al. Epidemic clones, oceanic gene pools, and eco-LD in the free living marine pathogen Vibrio parahaemolyticus. Mol. Biol. Evol. 32, 1396–1410 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Coll, F. et al. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat. Genet. 50, 307–316 (2018).

    Article  PubMed  Google Scholar 

  6. Emily, M., Mailund, T., Hein, J., Schauser, L. & Schierup, M. H. Using biological networks to search for interacting loci in genome-wide association studies. Eur. J. Hum. Genet. 17, 1231–1240 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marks, D. S. et al. Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 6, e28766 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lapedes, A. S., Giraud, B., Liu, L. & Stormo, G. D. Correlated mutations in models of protein sequences: phylogenetic and structural effects. Lect. Notes Monogr. Ser. 33, 236–256 (1999).

    Article  Google Scholar 

  9. Qin, C. & Colwell, L. J. Power law tails in phylogenetic systems. Proc. Natl Acad. Sci. USA 115, 690–695 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cocco, S., Monasson, R. & Weigt, M. From principal component to direct coupling analysis of coevolution in proteins: low-eigenvalue modes are needed for structure prediction. PLoS Comput. Biol. 9, e1003176 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weinreb, C. et al. 3D RNA and functional interactions from evolutionary couplings. Cell 165, 963–975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hopf, T. A. et al. Sequence co-evolution gives 3D contacts and structures of protein complexes. eLife 3, e03430 (2014).

    Article  PubMed Central  Google Scholar 

  13. Hopft, T. A. et al. Mutation effects predicted from sequence co-variation. Nat. Biotechnol. 35, 128–135 (2017).

    Article  Google Scholar 

  14. Skwark, M. J. et al. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis. PLoS Genet. 13, e1006508 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Puranen, S. SuperDCA for genome-wide epistasis analysis. Microb. Genom. 4, e000184 (2018).

    PubMed Central  Google Scholar 

  16. Grad, Y. H. et al. Genomic epidemiology of gonococcal resistance to extended-spectrum cephalosporins, macrolides, and fluoroquinolones in the United States, 2000–2013. J. Infect. Dis. 214, 1579–1587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Demczuk, W. et al. Whole-genome phylogenomic heterogeneity of Neisseria gonorrhoeae isolates with decreased cephalosporin susceptibility collected in Canada between 1989 and 2013. J. Clin. Microbiol. 53, 191–200 (2015).

    Article  PubMed  Google Scholar 

  18. De Silva, D. et al. Whole-genome sequencing to determine transmission of Neisseria gonorrhoeae: an observational study. Lancet Infect. Dis. 16, 1295–1303 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 7.1 (European Committee on Antimicrobial Susceptibility Testing, 2017); http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_7.1_Breakpoint_Tables.pdf

  20. Remmele, C. W. et al. Transcriptional landscape and essential genes of Neisseria gonorrhoeae. Nucleic Acids Res. 42, 10579–10595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ekeberg, M., Lövkvist, C., Lan, Y., Weigt, M. & Aurell, E. Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. Phys. Rev. E 87, 012707 (2013).

    Article  Google Scholar 

  22. Harrison, O. B. et al. Genomic analyses of Neisseria gonorrhoeae reveal an association of the gonococcal genetic island with antimicrobial resistance. J. Infect. 73, 578–587 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Griffiss, J. M., Lammel, C. J., Wang, J., Dekker, N. P. & Brooks, G. Neisseria gonorrhoeae coordinately uses Pili and Opa to activate HEC-1-B cell microvilli, which causes engulfment of the gonococci. Infect. Immun. 67, 3469–3480 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ronpirin, C., Jerse, A. E. & Cornelissen, C. N. Gonococcal genes encoding transferrin-binding proteins A and B are arranged in a bicistronic operon but are subject to differential expression. Infect. Immun. 69, 6336–6347 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krell, T. et al. Insight into the structure and function of the transferrin receptor from Neisseria meningitidis using microcalorimetric techniques. J. Biol. Chem. 278, 14712–14722 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Tønjum, T. & Koomey, M. The pilus colonization factor of pathogenic neisserial species: organelle biogenesis and structure/function relationships—a review. Gene 192, 155–163 (1997).

    Article  PubMed  Google Scholar 

  27. Heckels, J. E. Structure and function of pili of pathogenic Neisseria species. Clin. Microbiol. Rev. 2, S66–S73 (1989).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Szklarczyk, D. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sul, J. H. et al. Accounting for population structure in gene-by-environment interactions in genome-wide association studies using mixed models. PLoS Genet. 12, e1005849 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. & Corander, J. RhierBAPS: an R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 3, 93 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seib, K. L. et al. Defenses against oxidative stress in Neisseria gonorrhoeae: a system tailored for a challenging environment. Microbiol. Mol. Biol. Rev. 70, 344–361 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kohanski, M. A., Dwyer, D. J. & Collins, J. J. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8, 423–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Unemo, M. & Nicholas, R. A. Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea. Future Microbiol. 7, 1401–1422 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Todorova, K. et al. Transfer of penicillin resistance from Streptococcus oralis to Streptococcus pneumoniae identifies murE as resistance determinant. Mol. Microbiol. 97, 866–880 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Redgrave, L. S., Sutton, S. B., Webber, M. A. & Piddock, L. J. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 22, 438–445 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Rozen, D. E., McGee, L., Levin, B. R. & Klugman, K. P. Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 51, 412–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Duckworth, B. P. et al. Bisubstrate adenylation inhibitors of biotin protein ligase from Mycobacterium tuberculosis. Chem. Biol. 18, 1432–1441 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Correia, S. et al. Comparative subproteomic analysis of clinically acquired fluoroquinolone resistance and ciprofloxacin stress in Salmonella Typhimurium DT104B. Proteomics Clin. Appl. 11, 1600107 (2017).

    Article  Google Scholar 

  41. Ubukata, K. et al. Association of amino acid substitutions in penicillin-binding protein 3 with β-lactam resistance in β-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob. Agents Chemother. 45, 1693–1699 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morikawa, Y. et al. In vitro activities of piperacillin against β-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob. Agents Chemother. 48, 1229–1234 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vaara, M. Outer membrane permeability barrier to azithromycin, clarithromycin, and roxithromycin in gram-negative enteric bacteria. Antimicrob. Agents Chemother. 37, 354–356 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Delcour, A. H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta 1794, 808–816 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, S. H., Wray, N. R., Goddard, M. E. & Visscher, P. M. Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet. 88, 294–305 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Barber, M. F. & Elde, N. C. Escape from bacterial iron piracy through rapid evolution of transferrin. Science 346, 1362–1366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bradley, P. et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat. Commun. 6, 10063 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151, 165–188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johns, N. I. et al. Metagenomic mining of regulatory elements enables programmable species-selective gene expression. Nat. Methods 15, 323–329 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Toth-Petroczy, A. et al. Structured states of disordered proteins from genomic sequences. Cell 167, 158–170 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dunn, S. D., Wahl, L. M. & Gloor, G. B. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics 24, 333–340 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era—concepts and misconceptions. Nat. Rev. Genet. 9, 255–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15 (2015).

    Article  PubMed  Google Scholar 

  54. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yang, Z Computational Molecular Evolution (Oxford Univ. Press, Oxford, 2006).

    Book  Google Scholar 

  56. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Letunic, I. & Bork, P. Interactive tree of life (iTOL)v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Faure, M. et al. Interaction between the lipoamide-containing H-protein and the lipoamide dehydrogenase (L-protein) of the glycine decarboxylase multienzyme system 2. Crystal structures of H- and L-proteins. Eur. J. Biochem. 267, 2890–2898 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Gordon, E. et al. Crystal structure of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-diaminopimelate ligase from Escherichia coli. J. Biol. Chem. 276, 10999–11006 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Marks laboratory and C. Sander for his support during this research project.

Author information

Authors and Affiliations

Authors

Contributions

D.S.M. conceived the project and supervised the research. D.S.M, B.S and R.M designed and planned the research. B.S. implemented the analysis methods. B.S. and R.M. analysed the data with the help of J.N., M.R.F. and D.S.M.. B.S., R.M and D.S.M. wrote the paper. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Debora S. Marks.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Reporting Summary

Supplementary Table 1

Minimum inhibitory concentration of penicillin (PEN), tetracycline (TET), cefixime (CFX), and ciprofloxacin (CIPRO) measured in the exploratory (n = 1,102) and confirmatory dataset (n = 495) and their NCBI SRA identifiers.

Supplementary Table 2

Significant evolutionarily coupled loci of exploratory dataset (n = 1,102).

Supplementary Table 3

Evolutionarily coupled gene–gene interactions of the exploratory dataset (n = 1,102).

Supplementary Table 4

Entire single-locus GWAS analysis of the exploratory and confirmatory dataset.

Supplementary Table 5

Confirmed and Bonferroni-corrected epistatic associations.

Supplementary Table 6

Entire epistatic GWAS analysis of the exploratory and confirmatory datasets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schubert, B., Maddamsetti, R., Nyman, J. et al. Genome-wide discovery of epistatic loci affecting antibiotic resistance in Neisseria gonorrhoeae using evolutionary couplings. Nat Microbiol 4, 328–338 (2019). https://doi.org/10.1038/s41564-018-0309-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0309-1

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology