Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic cancer vaccines

Abstract

Therapeutic cancer vaccines have undergone a resurgence in the past decade. A better understanding of the breadth of tumour-associated antigens, the native immune response and development of novel technologies for antigen delivery has facilitated improved vaccine design. The goal of therapeutic cancer vaccines is to induce tumour regression, eradicate minimal residual disease, establish lasting antitumour memory and avoid non-specific or adverse reactions. However, tumour-induced immunosuppression and immunoresistance pose significant challenges to achieving this goal. In this Review, we deliberate on how to improve and expand the antigen repertoire for vaccines, consider developments in vaccine platforms and explore antigen-agnostic in situ vaccines. Furthermore, we summarize the reasons for failure of cancer vaccines in the past and provide an overview of various mechanisms of resistance posed by the tumour. Finally, we propose strategies for combining suitable vaccine platforms with novel immunomodulatory approaches and standard-of-care treatments for overcoming tumour resistance and enhancing clinical efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tumour immunity regulation.
Fig. 2: Qualities of neoantigens.
Fig. 3: Simplified depiction of cancer vaccine delivery platforms.
Fig. 4: Mechanisms of resistance to vaccine therapy.

Similar content being viewed by others

References

  1. Wang, S. S. et al. Tumor-infiltrating B cells: their role and application in anti-tumor immunity in lung cancer. Cell Mol. Immunol. 16, 6–18 (2019).

    CAS  PubMed  Google Scholar 

  2. Mollica Poeta, V., Massara, M., Capucetti, A. & Bonecchi, R. Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front. Immunol. 10, 379 (2019).

    PubMed  PubMed Central  Google Scholar 

  3. Balan, S., Radford, K. J. & Bhardwaj, N. Unexplored horizons of cDC1 in immunity and tolerance. Adv. Immunol. 148, 49–91 (2020).

    PubMed  Google Scholar 

  4. Fucikova, J. et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 11, 1013 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Alloatti, A., Kotsias, F., Magalhaes, J. G. & Amigorena, S. Dendritic cell maturation and cross-presentation: timing matters! Immunol. Rev. 272, 97–108 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ebrahimi-Nik, H. et al. CD11c+ MHCIIlo GM-CSF-bone marrow-derived dendritic cells act as antigen donor cells and as antigen presenting cells in neoepitope-elicited tumor immunity against a mouse fibrosarcoma. Cancer Immunol. Immunother. 67, 1449–1459 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yewdall, A. W., Drutman, S. B., Jinwala, F., Bahjat, K. S. & Bhardwaj, N. CD8+ T cell priming by dendritic cell vaccines requires antigen transfer to endogenous antigen presenting cells. PLoS One 5, e11144 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. Ruhland, M. K. et al. Visualizing synaptic transfer of tumor antigens among dendritic cells. Cancer Cell 37, 786–799 e785 (2020). Demonstrates that migratory DCs take up tumour antigens in the TME and transfer these antigen-bearing vesicles to the lymph node-resident DCs for cross-presentation and antitumour T cell activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Roberts, E. W. et al. Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30, 324–336 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Garg, A. D. & Agostinis, P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol. Rev. 280, 126–148 (2017).

    CAS  PubMed  Google Scholar 

  11. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    CAS  PubMed  Google Scholar 

  12. Vansteenkiste, J. F. et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 17, 822–835 (2016).

    CAS  PubMed  Google Scholar 

  13. Giaccone, G. et al. A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. Eur. J. Cancer 51, 2321–2329 (2015).

    CAS  PubMed  Google Scholar 

  14. Butts, C. et al. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol. 15, 59–68 (2014).

    CAS  PubMed  Google Scholar 

  15. Rini, B. I. et al. IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 17, 1599–1611 (2016).

    CAS  PubMed  Google Scholar 

  16. Middleton, G. et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol. 15, 829–840 (2014).

    CAS  PubMed  Google Scholar 

  17. Lawson, D. H. et al. Randomized, placebo-controlled, phase III Trial of yeast-derived granulocyte-macrophage colony-stimulating factor (GM-CSF) versus peptide vaccination versus GM-CSF plus peptide vaccination versus placebo in patients with no evidence of disease after complete surgical resection of locally advanced and/or stage IV melanoma: a trial of the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network Cancer Research Group (E4697). J. Clin. Oncol. 33, 4066–4076 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    CAS  PubMed  Google Scholar 

  19. Prado, F. B. et al. Pharyngeal airway space and frontal and sphenoid sinus changes after maxillomandibular advancement with counterclockwise rotation for class II anterior open bite malocclusions. Dentomaxillofac Radiol. 41, 103–109 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Atanackovic, D. et al. Vaccine-induced CD4+ T cell responses to MAGE-3 protein in lung cancer patients. J. Immunol. 172, 3289–3296 (2004).

    CAS  PubMed  Google Scholar 

  21. Ulloa-Montoya, F. et al. Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. J. Clin. Oncol. 31, 2388–2395 (2013).

    CAS  PubMed  Google Scholar 

  22. Nemunaitis, J. et al. Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J. Clin. Oncol. 24, 4721–4730 (2006).

    CAS  PubMed  Google Scholar 

  23. Butts, C. et al. Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J. Clin. Oncol. 23, 6674–6681 (2005).

    CAS  PubMed  Google Scholar 

  24. Kirkwood, J. M. et al. Immunogenicity and antitumor effects of vaccination with peptide vaccine+/-granulocyte-monocyte colony-stimulating factor and/or IFN-alpha2b in advanced metastatic melanoma: Eastern Cooperative Oncology Group phase II trial E1696. Clin. Cancer Res. 15, 1443–1451 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. van Esch, E. M. et al. Expression of coinhibitory receptors on T cells in the microenvironment of usual vulvar intraepithelial neoplasia is related to proinflammatory effector T cells and an increased recurrence-free survival. Int. J. Cancer 136, E95–E106 (2015).

    PubMed  Google Scholar 

  26. Abdulrahman, Z. et al. A pre-existing coordinated inflammatory microenvironment is associated with complete response of vulvar high-grade squamous intraepithelial lesions to different forms of immunotherapy. Int. J. Cancer 15, 2914-2923.

  27. Abdulrahman, Z. et al. Pre-existing inflammatory immune microenvironment predicts the clinical response of vulvar high-grade squamous intraepithelial lesions to therapeutic HPV16 vaccination. J. Immunother. Cancer 8, e000563 (2020). Shows that clinical responses with vaccines are obtained only in ‘hot’ tumours and that vaccination cannot overcome a cold tumour microenvironment.

    PubMed  PubMed Central  Google Scholar 

  28. Melief, C. J. M. et al. Strong vaccine responses during chemotherapy are associated with prolonged cancer survival. Sci. Transl. Med. 12, eaaz8235 (2020). First to show in patients that vaccine efficacy can be boosted by alleviating local and systemic immunosuppression by MDSCs, resulting in a stronger T cell response and clinical benefit.

    CAS  PubMed  Google Scholar 

  29. Hazama, S. et al. A phase IotaI study of five peptides combination with oxaliplatin-based chemotherapy as a first-line therapy for advanced colorectal cancer (FXV study). J. Transl. Med. 12, 108 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. van Poelgeest, M. I. et al. HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J. Transl. Med. 11, 88 (2013).

    PubMed  PubMed Central  Google Scholar 

  31. Hansen, G. L., Gaudernack, G., Brunsvig, P. F., Cvancarova, M. & Kyte, J. A. Immunological factors influencing clinical outcome in lung cancer patients after telomerase peptide vaccination. Cancer Immunol. Immunother. 64, 1609–1621 (2015).

    CAS  PubMed  Google Scholar 

  32. Talebian Yazdi, M. et al. Local and systemic XAGE-1b-specific immunity in patients with lung adenocarcinoma. Cancer Immunol. Immunother. 64, 1109–1121 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Santegoets, S. et al. The blood mMDSC to DC ratio is a sensitive and easy to assess independent predictive factor for epithelial ovarian cancer survival. Oncoimmunology 7, e1465166 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bailur, J. K., Gueckel, B., Derhovanessian, E. & Pawelec, G. Presence of circulating Her2-reactive CD8+ T-cells is associated with lower frequencies of myeloid-derived suppressor cells and regulatory T cells, and better survival in older breast cancer patients. Breast Cancer Res. 17, 34 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. Weide, B. et al. Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. Clin. Cancer Res. 20, 1601–1609 (2014).

    CAS  PubMed  Google Scholar 

  36. Welters, M. J. et al. Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc. Natl Acad. Sci. USA 107, 11895–11899 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Scurr, M. et al. Effect of modified vaccinia Ankara-5T4 and low-dose cyclophosphamide on antitumor immunity in metastatic colorectal cancer: a randomized clinical trial. JAMA Oncol. 3, e172579 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Hipp, M. M. et al. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood 111, 5610–5620 (2008).

    CAS  PubMed  Google Scholar 

  39. Rettig, L. et al. Gemcitabine depletes regulatory T-cells in human and mice and enhances triggering of vaccine-specific cytotoxic T-cells. Int. J. Cancer 129, 832–838 (2011).

    CAS  PubMed  Google Scholar 

  40. Suzuki, E., Kapoor, V., Jassar, A. S., Kaiser, L. R. & Albelda, S. M. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11, 6713–6721 (2005).

    CAS  PubMed  Google Scholar 

  41. Vermeij, R. et al. Potentiation of a p53-SLP vaccine by cyclophosphamide in ovarian cancer: a single-arm phase II study. Int. J. Cancer 131, E670–E680 (2012).

    CAS  PubMed  Google Scholar 

  42. Borch, T. H. et al. mRNA-transfected dendritic cell vaccine in combination with metronomic cyclophosphamide as treatment for patients with advanced malignant melanoma. Oncoimmunology 5, e1207842 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Camisaschi, C. et al. Effects of cyclophosphamide and IL-2 on regulatory CD4+ T cell frequency and function in melanoma patients vaccinated with HLA-class I peptides: impact on the antigen-specific T cell response. Cancer Immunol. Immunother. 62, 897–908 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dijkgraaf, E. M. et al. A phase 1/2 study combining gemcitabine, Pegintron and p53 SLP vaccine in patients with platinum-resistant ovarian cancer. Oncotarget 6, 32228–32243 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. Finke, J. H. et al. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin. Cancer Res. 14, 6674–6682 (2008).

    CAS  PubMed  Google Scholar 

  46. van Dongen, M. et al. Anti-inflammatory M2 type macrophages characterize metastasized and tyrosine kinase inhibitor-treated gastrointestinal stromal tumors. Int. J. Cancer 127, 899–909 (2010).

    PubMed  Google Scholar 

  47. Sevko, A. et al. Cyclophosphamide promotes chronic inflammation-dependent immunosuppression and prevents antitumor response in melanoma. J. Invest. Dermatol. 133, 1610–1619 (2013).

    CAS  PubMed  Google Scholar 

  48. Dehlin, M., Andersson, S., Erlandsson, M., Brisslert, M. & Bokarewa, M. Inhibition of fms-like tyrosine kinase 3 alleviates experimental arthritis by reducing formation of dendritic cells and antigen presentation. J. Leukoc. Biol. 90, 811–817 (2011).

    CAS  PubMed  Google Scholar 

  49. van der Burg, S. H. Correlates of immune and clinical activity of novel cancer vaccines. Semin. Immunol. 39, 119–136 (2018).

    PubMed  Google Scholar 

  50. Bocchia, M. et al. Complete molecular response in CML after p210 BCR-ABL1-derived peptide vaccination. Nat. Rev. Clin. Oncol. 7, 600–603 (2010).

    PubMed  Google Scholar 

  51. Suzuki, S. et al. Efficacy of glypican-3-derived peptide vaccine therapy on the survival of patients with refractory ovarian clear cell carcinoma. Oncoimmunology 5, e1238542 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. Ishikawa, H. et al. Phase I clinical trial of vaccination with LY6K-derived peptide in patients with advanced gastric cancer. Gastric Cancer 17, 173–180 (2014).

    CAS  PubMed  Google Scholar 

  53. Yoshitake, Y. et al. Phase II clinical trial of multiple peptide vaccination for advanced head and neck cancer patients revealed induction of immune responses and improved OS. Clin. Cancer Res. 21, 312–321 (2015).

    CAS  PubMed  Google Scholar 

  54. Hazama, S. et al. A phase I study of combination vaccine treatment of five therapeutic epitope-peptides for metastatic colorectal cancer; safety, immunological response, and clinical outcome. J. Transl. Med. 12, 63 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Asahara, S., Takeda, K., Yamao, K., Maguchi, H. & Yamaue, H. Phase I/II clinical trial using HLA-A24-restricted peptide vaccine derived from KIF20A for patients with advanced pancreatic cancer. J. Transl. Med. 11, 291 (2013).

    PubMed  PubMed Central  Google Scholar 

  56. Koster, B. D. et al. Autologous tumor cell vaccination combined with systemic CpG-B and IFN-alpha promotes immune activation and induces clinical responses in patients with metastatic renal cell carcinoma: a phase II trial. Cancer Immunol. Immunother. 68, 1025–1035 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kotsakis, A. et al. A phase II trial evaluating the clinical and immunologic response of HLA-A2+ non-small cell lung cancer patients vaccinated with an hTERT cryptic peptide. Lung Cancer 86, 59–66 (2014).

    PubMed  Google Scholar 

  58. Iclozan, C., Antonia, S., Chiappori, A., Chen, D. T. & Gabrilovich, D. Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol. Immunother. 62, 909–918 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chiang, C. L. et al. A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin. Cancer Res. 19, 4801–4815 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wen, P. Y. et al. A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clin. Cancer Res. 25, 5799–5807 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Trimble, C. L. et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 386, 2078–2088 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Choi, Y. J. et al. A phase II, prospective, randomized, multicenter, open-label study of GX-188E, an HPV DNA vaccine, in patients with cervical intraepithelial neoplasia 3. Clin. Cancer Res. 26, 1616–1623 (2020).

    CAS  PubMed  Google Scholar 

  63. Kim, T. J. et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat. Commun. 5, 5317 (2014).

    CAS  PubMed  Google Scholar 

  64. Kenter, G. G. et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 361, 1838–1847 (2009). First demonstration of clinical efficacy for SLP vaccines.

    CAS  PubMed  Google Scholar 

  65. van Poelgeest, M. I. et al. Vaccination against oncoproteins of HPV16 for noninvasive vulvar/vaginal lesions: lesion clearance is related to the strength of the T-cell response. Clin. Cancer Res. 22, 2342–2350 (2016). Confirmation of clinical efficacy for SLP vaccines in the second independent study.

    PubMed  Google Scholar 

  66. Massarelli, E. et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial. JAMA Oncol. 5, 67–73 (2019). First evidence that therapeutic vaccination combined with anti-PD1 leads to a better clinical outcome (doubling of overall response rate and of overall survival).

    PubMed  Google Scholar 

  67. Aggarwal, C. et al. Immunotherapy targeting HPV16/18 generates potent immune responses in HPV-associated head and neck cancer. Clin. Cancer Res. 25, 110–124 (2019). Describes one patient who after therapeutic vaccination and clinical progression was treated with anti-PD1 and had a complete response, thus constituting an anecdotal clinical response in a single patient.

    CAS  PubMed  Google Scholar 

  68. Oh, J. et al. Phase II study of Vigil® DNA engineered immunotherapy as maintenance in advanced stage ovarian cancer. Gynecol. Oncol. 143, 504–510 (2016).

    CAS  PubMed  Google Scholar 

  69. Yoshimura, K. et al. A phase 2 randomized controlled trial of personalized peptide vaccine immunotherapy with low-dose dexamethasone versus dexamethasone alone in chemotherapy-naive castration-resistant prostate cancer. Eur. Urol. 70, 35–41 (2016).

    CAS  PubMed  Google Scholar 

  70. Noguchi, M. et al. an open-label, randomized phase ii trial of personalized peptide vaccination in patients with bladder cancer that progressed after platinum-based chemotherapy. Clin. Cancer Res. 22, 54–60 (2016).

    CAS  PubMed  Google Scholar 

  71. Mittendorf, E. A. et al. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide AE37 vaccine in breast cancer patients to prevent recurrence. Ann. Oncol. 27, 1241–1248 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Pavlick, A. et al. Combined vaccination with NY-ESO-1 protein, poly-ICLC, and Montanide improves humoral and cellular immune responses in patients with high-risk melanoma. Cancer Immunol. Res. 8, 70–80 (2020).

    CAS  PubMed  Google Scholar 

  73. Comiskey, M. C., Dallos, M. C. & Drake, C. G. Immunotherapy in prostate cancer: teaching an old dog new tricks. Curr. Oncol. Rep. 20, 75 (2018).

    PubMed  Google Scholar 

  74. van der Burg, S. H., Arens, R., Ossendorp, F., van Hall, T. & Melief, C. J. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat. Rev. Cancer 16, 219–233 (2016).

    PubMed  Google Scholar 

  75. Melief, C. J., van Hall, T., Arens, R., Ossendorp, F. & van der Burg, S. H. Therapeutic cancer vaccines. J. Clin. Invest. 125, 3401–3412 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Tomaic, V. Functional roles of E6 and E7 oncoproteins in HPV-induced malignancies at diverse anatomical sites. Cancers (Basel) 8, 95 (2016).

    Google Scholar 

  77. Smith, C. C. et al. Alternative tumour-specific antigens. Nat. Rev. Cancer 19, 465–478 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Roudko, V. et al. Shared immunogenic poly-epitope frameshift mutations in microsatellite unstable tumors. Cell 183, 1634–1649 e1617 (2020). Identifies highly immunogenic shared polyepitope neoantigens that could generate unique neoantigens after vaccination based on patient-specific HLA expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Engelhard, V. H. et al. MHC-restricted phosphopeptide antigens: preclinical validation and first-in-humans clinical trial in participants with high-risk melanoma. J Immunother Cancer 8, e000262 (2020).

    PubMed  PubMed Central  Google Scholar 

  80. Brentville, V. A., Vankemmelbeke, M., Metheringham, R. L. & Durrant, L. G. Post-translational modifications such as citrullination are excellent targets for cancer therapy. Semin. Immunol. 47, 101393 (2020).

    CAS  PubMed  Google Scholar 

  81. Malaker, S. A. et al. Identification of glycopeptides as posttranslationally modified neoantigens in leukemia. Cancer Immunol. Res. 5, 376–384 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yarchoan, M. et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight 4, e126908 (2019).

    PubMed Central  Google Scholar 

  83. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu, D. et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat. Med. 25, 1916–1927 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Maleki Vareki, S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J. Immunother. Cancer 6, 157 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Roudko, V., Greenbaum, B. & Bhardwaj, N. Computational prediction and validation of tumor-associated neoantigens. Front. Immunol. 11, 27 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Verdegaal, E. M. et al. Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature 536, 91–95 (2016).

    CAS  PubMed  Google Scholar 

  89. Linnemann, C. et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat. Med. 21, 81–85 (2015).

    CAS  PubMed  Google Scholar 

  90. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).

    CAS  PubMed  Google Scholar 

  94. Lazaro, A. et al. Human leukocyte antigen (HLA) typing by DNA sequencing. Methods Mol. Biol. 1034, 161–195 (2013).

    CAS  PubMed  Google Scholar 

  95. Alioto, T. S. et al. A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing. Nat. Commun. 6, 10001 (2015).

    CAS  PubMed  Google Scholar 

  96. Wang, Q., Shashikant, C. S., Jensen, M., Altman, N. S. & Girirajan, S. Novel metrics to measure coverage in whole exome sequencing datasets reveal local and global non-uniformity. Sci. Rep. 7, 885 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Jennings, L. J. et al. Guidelines for validation of next-generation sequencing-based oncology panels: a joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. J. Mol. Diagn. 19, 341–365 (2017).

    PubMed  Google Scholar 

  98. Carreno, B. M. et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348, 803–808 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    CAS  PubMed  Google Scholar 

  100. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

    CAS  PubMed  Google Scholar 

  102. Alspach, E. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696–701 (2019). Important study that shows the role of CD4+ T cells in the TME.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ott, P. A. et al. A Phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell 183, 347–362 e324 (2020). Important study that shows the role of CD4+ T cells in the TME and the need for tumour specificity as they need to be reactivated also locally in the tumour.

    CAS  PubMed  Google Scholar 

  104. van den Bulk, J. et al. Neoantigen-specific immunity in low mutation burden colorectal cancers of the consensus molecular subtype 4. Genome Med. 11, 87 (2019).

    PubMed  PubMed Central  Google Scholar 

  105. Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020). Demonstrates that a strong delivery platform, the intravenously administered nanoparticulate liposomal RNA vaccine, can overcome central tolerance to self non-mutated tumour-associated antigens and yield a clinical and immunological response.

    CAS  PubMed  Google Scholar 

  106. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    CAS  PubMed  Google Scholar 

  107. Frank, M. J. et al. Autologous tumor cell vaccine induces antitumor T cell immune responses in patients with mantle cell lymphoma: a phase I/II trial. J Exp Med 217, e20191712 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Liau, L. M. et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J. Transl. Med. 16, 142 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Maeng, H., Terabe, M. & Berzofsky, J. A. Cancer vaccines: translation from mice to human clinical trials. Curr. Opin. Immunol. 51, 111–122 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Vormehr, M., Tureci, O. & Sahin, U. Harnessing tumor mutations for truly individualized cancer vaccines. Annu. Rev. Med. 70, 395–407 (2019).

    CAS  PubMed  Google Scholar 

  111. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    CAS  PubMed  Google Scholar 

  112. Rosalia, R. A. et al. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur. J. Immunol. 43, 2554–2565 (2013).

    CAS  PubMed  Google Scholar 

  113. Duperret, E. K. et al. A synthetic DNA, multi-neoantigen vaccine drives predominately MHC class I CD8+ T-cell responses, impacting tumor challenge. Cancer Immunol. Res. 7, 174–182 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Oynebraten, I., Hinkula, J., Fredriksen, A. B. & Bogen, B. Increased generation of HIV-1 gp120-reactive CD8+ T cells by a DNA vaccine construct encoding the chemokine CCL3. PLoS One 9, e104814 (2014).

    PubMed  PubMed Central  Google Scholar 

  115. Lysen, A. et al. Dendritic cell targeted Ccl3- and Xcl1-fusion DNA vaccines differ in induced immune responses and optimal delivery site. Sci. Rep. 9, 1820 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    PubMed  Google Scholar 

  117. Heidegger, S. et al. RIG-I activating immunostimulatory RNA boosts the efficacy of anticancer vaccines and synergizes with immune checkpoint blockade. EBioMedicine 41, 146–155 (2019).

    PubMed  PubMed Central  Google Scholar 

  118. Reinhard, K. et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 367, 446–453 (2020).

    CAS  PubMed  Google Scholar 

  119. Feltkamp, M. C. et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur. J. Immunol. 23, 2242–2249 (1993).

    CAS  PubMed  Google Scholar 

  120. Speiser, D. E. et al. Unmodified self antigen triggers human CD8 T cells with stronger tumor reactivity than altered antigen. Proc. Natl Acad. Sci. USA 105, 3849–3854 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Appay, V. et al. New generation vaccine induces effective melanoma-specific CD8+ T cells in the circulation but not in the tumor site. J. Immunol. 177, 1670–1678 (2006).

    CAS  PubMed  Google Scholar 

  122. Speiser, D. E. et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest. 115, 739–746 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zwaveling, S. et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J. Immunol. 169, 350–358 (2002).

    CAS  PubMed  Google Scholar 

  124. Bijker, M. S. et al. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur. J. Immunol. 38, 1033–1042 (2008).

    CAS  PubMed  Google Scholar 

  125. Bijker, M. S. et al. CD8+ CTL priming by exact peptide epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J. Immunol. 179, 5033–5040 (2007).

    CAS  PubMed  Google Scholar 

  126. Borst, J., Ahrends, T., Babala, N., Melief, C. J. M. & Kastenmuller, W. CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 18, 635–647 (2018).

    CAS  PubMed  Google Scholar 

  127. Hailemichael, Y. et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nat. Med. 19, 465–472 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Welters, M. J. et al. Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses. Sci. Transl. Med. 8, 334ra352 (2016).

    Google Scholar 

  129. Sabbatini, P. et al. Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin. Cancer Res. 18, 6497–6508 (2012).

    CAS  PubMed  Google Scholar 

  130. Baumgaertner, P. et al. Vaccination of stage III/IV melanoma patients with long NY-ESO-1 peptide and CpG-B elicits robust CD8+ and CD4+ T-cell responses with multiple specificities including a novel DR7-restricted epitope. Oncoimmunology 5, e1216290 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Melssen, M. M. et al. A multipeptide vaccine plus toll-like receptor agonists LPS or polyICLC in combination with incomplete Freund’s adjuvant in melanoma patients. J. Immunother. Cancer 7, 163 (2019).

    PubMed  PubMed Central  Google Scholar 

  132. Ossendorp, F., Mengede, E., Camps, M., Filius, R. & Melief, C. J. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J. Exp. Med. 187, 693–702 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393, 480–483 (1998).

    CAS  PubMed  Google Scholar 

  134. Avigan, D., Rosenblatt, J. & Kufe, D. Dendritic/tumor fusion cells as cancer vaccines. Semin. Oncol. 39, 287–295 (2012).

    CAS  PubMed  Google Scholar 

  135. Sundarasetty, B. S. et al. Lentivirus-induced ‘Smart’ dendritic cells: pharmacodynamics and GMP-compliant production for immunotherapy against TRP2-positive melanoma. Gene Ther. 22, 707–720 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Wilgenhof, S. et al. Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J. Clin. Oncol. 34, 1330–1338 (2016).

    PubMed  Google Scholar 

  137. Gross, S. et al. Twelve-year survival and immune correlates in dendritic cell-vaccinated melanoma patients. JCI Insight 2, e91438 (2017).

    PubMed Central  Google Scholar 

  138. Le Gall, C. M., Weiden, J., Eggermont, L. J. & Figdor, C. G. Dendritic cells in cancer immunotherapy. Nat. Mater. 17, 474–475 (2018).

    PubMed  Google Scholar 

  139. Westdorp, H. et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J. Immunother. Cancer 7, 302 (2019).

    PubMed  PubMed Central  Google Scholar 

  140. Sprooten, J. et al. Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 8, e1638212 (2019).

    PubMed  PubMed Central  Google Scholar 

  141. Bourdely, P. et al. Transcriptional and functional analysis of CD1c+ human dendritic cells identifies a CD163+ subset priming CD8+CD103+ T cells. Immunity 53, 335–352 e338 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Saxena, M. & Bhardwaj, N. Re-emergence of dendritic cell vaccines for cancer treatment. Trends Cancer 4, 119–137 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017). Performs unbiased single-cell sequencing and identifies novel DC subsets in the blood.

    PubMed  PubMed Central  Google Scholar 

  144. Balan, S. et al. Large-scale human dendritic cell differentiation revealing Notch-dependent lineage bifurcation and heterogeneity. Cell Rep. 24, 1902–1915 e1906 (2018). Develops a culture system to differentiate and expand, to a large scale, different DC subsets from stem cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Moynihan, K. D. et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 22, 1402–1410 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. van der Maaden, K. et al. Hollow microneedle-mediated micro-injections of a liposomal HPV E743-63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. J. Control. Rel. 269, 347–354 (2018).

    Google Scholar 

  147. Lynn, G. M. et al. Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat. Biotechnol. 38, 320–332 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Baharom, F. et al. Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nat. Immunol. 22, 41–52 (2021). Demonstrates that the vaccination route can affect the quality of the immune response elicited.

    CAS  PubMed  Google Scholar 

  149. Li, A. W. et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nat. Mater. 17, 528–534 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2017).

    CAS  PubMed  Google Scholar 

  151. Hammerich, L., Bhardwaj, N., Kohrt, H. E. & Brody, J. D. In situ vaccination for the treatment of cancer. Immunotherapy 8, 315–330 (2016).

    CAS  PubMed  Google Scholar 

  152. Bhatia, S. et al. Intratumoral G100, a TLR4 agonist, induces antitumor immune responses and tumor regression in patients with Merkel cell carcinoma. Clin. Cancer Res. 25, 1185–1195 (2019).

    CAS  PubMed  Google Scholar 

  153. Frank, M. J. et al. In situ vaccination with a TLR9 agonist and local low-dose radiation induces systemic responses in untreated indolent lymphoma. Cancer Discov. 8, 1258–1269 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kyi, C. et al. Therapeutic immune modulation against solid cancers with intratumoral poly-ICLC: a pilot trial. Clin. Cancer Res. 24, 4937–4948 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ribas, A. et al. SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study. Cancer Discov. 8, 1250–1257 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Salazar, A. M., Erlich, R. B., Mark, A., Bhardwaj, N. & Herberman, R. B. Therapeutic in situ autovaccination against solid cancers with intratumoral poly-ICLC: case report, hypothesis, and clinical trial. Cancer Immunol. Res. 2, 720–724 (2014).

    PubMed  Google Scholar 

  157. Gravekamp, C. & Chandra, D. Targeting STING pathways for the treatment of cancer. Oncoimmunology 4, e988463 (2015).

    PubMed  PubMed Central  Google Scholar 

  158. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Ramanjulu, J. M. et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564, 439–443 (2018).

    CAS  PubMed  Google Scholar 

  160. Redelman-Sidi, G., Glickman, M. S. & Bochner, B. H. The mechanism of action of BCG therapy for bladder cancer–a current perspective. Nat. Rev. Urol. 11, 153–162 (2014).

    CAS  PubMed  Google Scholar 

  161. Kamath, P., Darwin, E., Arora, H. & Nouri, K. A review on imiquimod therapy and discussion on optimal management of basal cell carcinomas. Clin. Drug. Investig. 38, 883–899 (2018).

    CAS  PubMed  Google Scholar 

  162. Tio, D. et al. A systematic review on the role of imiquimod in lentigo maligna and lentigo maligna melanoma: need for standardization of treatment schedule and outcome measures. J. Eur. Acad. Dermatol. Venereol. 31, 616–624 (2017).

    CAS  PubMed  Google Scholar 

  163. Salmon, H. et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Barry, K. C. et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 24, 1178–1191 (2018). Defines a novel axis where FLT3L derived from NK cells in the TME induces intratumoural DC recruitment.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Beatty, G. L., Li, Y. & Long, K. B. Cancer immunotherapy: activating innate and adaptive immunity through CD40 agonists. Expert. Rev. Anticancer. Ther. 17, 175–186 (2017).

    CAS  PubMed  Google Scholar 

  166. Piechutta, M. & Berghoff, A. S. New emerging targets in cancer immunotherapy: the role of cluster of differentiation 40 (CD40/TNFR5). ESMO Open 4, e000510 (2019).

    PubMed  PubMed Central  Google Scholar 

  167. Hammerich, L. et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat. Med. 25, 814–824 (2019).

    CAS  PubMed  Google Scholar 

  168. O’Hara, M. H. et al. Abstract CT004: a phase Ib study of CD40 agonistic monoclonal antibody APX005M together with gemcitabine (Gem) and nab-paclitaxel (NP) with or without nivolumab (Nivo) in untreated metastatic ductal pancreatic adenocarcinoma (PDAC) patients. https://doi.org/10.1158/1538-7445.AM2019-CT004 (2019).

  169. Bhardwaj, N. et al. Flt3 ligand augments immune responses to anti-DEC-205-NY-ESO-1 vaccine through expansion of dendritic cell subsets. Nature Cancer, https://doi.org/10.1038/s43018-020-00143-y (2020). Demonstrates evidence in a randomized human trial that combination with agents that mobilize and expand the DC population, such as FLT3L, improve a vaccine’s potential for inducing potent and durable antitumour immunity.

  170. Harrington, K., Freeman, D. J., Kelly, B., Harper, J. & Soria, J. C. Optimizing oncolytic virotherapy in cancer treatment. Nat. Rev. Drug. Discov. 18, 689–706 (2019).

    CAS  PubMed  Google Scholar 

  171. Wang, G. et al. An engineered oncolytic virus expressing PD-L1 inhibitors activates tumor neoantigen-specific T cell responses. Nat. Commun. 11, 1395 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    CAS  PubMed  Google Scholar 

  173. Saxena, M. & Bhardwaj, N. Turbocharging vaccines: emerging adjuvants for dendritic cell based therapeutic cancer vaccines. Curr. Opin. Immunol. 47, 35–43 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Demaria, S., Coleman, C. N. & Formenti, S. C. Radiotherapy: changing the game in immunotherapy. Trends Cancer 2, 286–294 (2016).

    PubMed  PubMed Central  Google Scholar 

  175. Pilones, K. A. et al. Radiotherapy cooperates with IL15 to induce antitumor immune responses. Cancer Immunol. Res. https://doi.org/10.1158/2326-6066.CIR-19-0338 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Garris, C. S. et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-gamma and IL-12. Immunity 49, 1148–1161 e1147 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Sharma, M. et al. Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat. Commun. 11, 661 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Diab, A. et al. Bempegaldesleukin (NKTR-214) plus nivolumab in patients with advanced solid tumors: phase I dose-escalation study of safety, efficacy, and immune activation (PIVOT-02). Cancer Discov. https://doi.org/10.1158/2159-8290.CD-19-1510 (2020).

    Article  PubMed  Google Scholar 

  179. Lopes, J. E. et al. ALKS 4230: a novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J. Immunother. Cancer 8, e000673 (2020).

    PubMed  PubMed Central  Google Scholar 

  180. Weide, B. et al. Survival after intratumoral interleukin-2 treatment of 72 melanoma patients and response upon the first chemotherapy during follow-up. Cancer Immunol. Immunother. 60, 487–493 (2011).

    CAS  PubMed  Google Scholar 

  181. Bhatia, S. et al. Intratumoral delivery of plasmid IL12 via electroporation leads to regression of injected and noninjected tumors in Merkel cell carcinoma. Clin. Cancer Res. 26, 598–607 (2020).

    CAS  PubMed  Google Scholar 

  182. Greaney, S. K. et al. Intratumoral PLASMID IL12 electroporation therapy in patients with advanced melanoma induces systemic and intratumoral t-cell responses. Cancer Immunol. Res. 8, 246–254 (2020).

    CAS  PubMed  Google Scholar 

  183. Hill, H. C. et al. Cancer immunotherapy with interleukin 12 and granulocyte-macrophage colony-stimulating factor-encapsulated microspheres: coinduction of innate and adaptive antitumor immunity and cure of disseminated disease. Cancer Res. 62, 7254–7263 (2002).

    CAS  PubMed  Google Scholar 

  184. Barrett, J. A. et al. Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System® (RTS®) gene switch as gene therapy for the treatment of glioma. Cancer Gene Ther. 25, 106–116 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Hewitt, S. L. et al. Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin. Cancer Res. 26, 6284–6298 (2020).

    CAS  PubMed  Google Scholar 

  186. Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).

    CAS  PubMed  Google Scholar 

  187. Wang, Z. & Cao, Y. J. Adoptive cell therapy targeting neoantigens: a frontier for cancer research. Front. Immunol. 11, 176 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Miyauchi, S. et al. HPV16 E5 mediates resistance to PD-L1 blockade and can be targeted with rimantadine in head and neck cancer. Cancer Res. 80, 732–746 (2020).

    CAS  PubMed  Google Scholar 

  189. Gurjao, C. et al. Intrinsic resistance to immune checkpoint blockade in a mismatch repair-deficient colorectal cancer. Cancer Immunol. Res. 7, 1230–1236 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Chew, G. L. et al. DUX4 suppresses MHC class I to promote cancer immune evasion and resistance to checkpoint blockade. Dev. Cell 50, 658–671 e657 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Huang, L. et al. The RNA-binding protein MEX3B mediates resistance to cancer immunotherapy by downregulating HLA-A expression. Clin. Cancer Res. 24, 3366–3376 (2018).

    CAS  PubMed  Google Scholar 

  192. Kriegsman, B. A. et al. Frequent loss of IRF2 in cancers leads to immune evasion through decreased MHC class I antigen presentation and increased PD-L1 expression. J. Immunol. 203, 1999–2010 (2019).

    CAS  PubMed  Google Scholar 

  193. Ramakrishnan, R. et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J. Immunol. 192, 2920–2931 (2014).

    PubMed  Google Scholar 

  194. Song, M. et al. IRE1alpha-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature 562, 423–428 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Gettinger, S. et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7, 1420–1435 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Tran, E. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375, 2255–2262 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Cabrera, T. et al. HLA class I expression in metastatic melanoma correlates with tumor development during autologous vaccination. Cancer Immunol. Immunother. 56, 709–717 (2007).

    CAS  PubMed  Google Scholar 

  198. Carretero, R. et al. Bacillus Calmette-Guerin immunotherapy of bladder cancer induces selection of human leukocyte antigen class I-deficient tumor cells. Int. J. Cancer 129, 839–846 (2011).

    CAS  PubMed  Google Scholar 

  199. Paulson, K. G. et al. Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA. Nat. Commun. 9, 3868 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    CAS  PubMed  Google Scholar 

  201. Kearney, C. J. et al. Tumor immune evasion arises through loss of TNF sensitivity. Sci Immunol 3, eaar3451 (2018).

    PubMed  Google Scholar 

  202. Gao, J. et al. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167, 397–404 e399 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Gooden, M. et al. HLA-E expression by gynecological cancers restrains tumor-infiltrating CD8+ T lymphocytes. Proc. Natl Acad. Sci. USA 108, 10656–10661 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Talebian Yazdi, M. et al. The positive prognostic effect of stromal CD8+ tumor-infiltrating T cells is restrained by the expression of HLA-E in non-small cell lung carcinoma. Oncotarget 7, 3477–3488 (2016).

    PubMed  Google Scholar 

  205. Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. van Montfoort, N. et al. NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines. Cell 175, 1744–1755 e1715 (2018).

    PubMed  PubMed Central  Google Scholar 

  207. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    CAS  PubMed  Google Scholar 

  208. Peng, W. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6, 202–216 (2016).

    CAS  PubMed  Google Scholar 

  209. Luke, J. J., Bao, R., Sweis, R. F., Spranger, S. & Gajewski, T. F. WNT/beta-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res. 25, 3074–3083 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Trujillo, J. A. et al. Secondary resistance to immunotherapy associated with beta-catenin pathway activation or PTEN loss in metastatic melanoma. J. Immunother. Cancer 7, 295 (2019).

    PubMed  PubMed Central  Google Scholar 

  211. Morisaki, T. et al. Intranodal administration of neoantigen peptide-loaded dendritic cell vaccine elicits epitope-specific T cell responses and clinical effects in a patient with chemorefractory ovarian cancer with malignant ascites. Immunol Invest, 1–18 (2020).

  212. Chao, M. P., Majeti, R. & Weissman, I. L. Programmed cell removal: a new obstacle in the road to developing cancer. Nat. Rev. Cancer 12, 58–67 (2011).

    PubMed  Google Scholar 

  213. Zer, A. et al. Correlation of neutrophil to lymphocyte ratio and absolute neutrophil count with outcomes with PD-1 axis inhibitors in patients with advanced non-small-cell lung cancer. Clin. Lung Cancer 19, 426–434 e421 (2018).

    CAS  PubMed  Google Scholar 

  214. Capone, M. et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab. J. Immunother. Cancer 6, 74 (2018).

    PubMed  PubMed Central  Google Scholar 

  215. Mariathasan, S. et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Mazzarella, L. et al. The evolving landscape of ‘next-generation’ immune checkpoint inhibitors: A review. Eur. J. Cancer 117, 14–31 (2019).

    CAS  PubMed  Google Scholar 

  217. Weinberg, F., Ramnath, N. & Nagrath, D. Reactive oxygen species in the tumor microenvironment: an overview. Cancers (Basel) 11, 1191 (2019).

    CAS  Google Scholar 

  218. Brown, J. M., Recht, L. & Strober, S. The promise of targeting macrophages in cancer therapy. Clin. Cancer Res. 23, 3241–3250 (2017).

    PubMed  PubMed Central  Google Scholar 

  219. Singel, K. L. et al. Mature neutrophils suppress T cell immunity in ovarian cancer microenvironment. JCI Insight 4, e122311 (2019).

    PubMed Central  Google Scholar 

  220. Liu, Y. et al. Regulation of arginase I activity and expression by both PD-1 and CTLA-4 on the myeloid-derived suppressor cells. Cancer Immunol. Immunother. 58, 687–697 (2009).

    CAS  PubMed  Google Scholar 

  221. Ruffell, B. & Coussens, L. M. Macrophages and therapeutic resistance in cancer. Cancer Cell 27, 462–472 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Saleh, R. & Elkord, E. Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Lett. 457, 168–179 (2019).

    CAS  PubMed  Google Scholar 

  223. Lin, Y. et al. Fibroblastic FAP promotes intrahepatic cholangiocarcinoma growth via MDSCs recruitment. Neoplasia 21, 1133–1142 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Flavell, R. A., Sanjabi, S., Wrzesinski, S. H. & Licona-Limon, P. The polarization of immune cells in the tumour environment by TGFbeta. Nat. Rev. Immunol. 10, 554–567 (2010).

    CAS  PubMed  Google Scholar 

  225. Chuang, Y., Hung, M. E., Cangelose, B. K. & Leonard, J. N. Regulation of the IL-10-driven macrophage phenotype under incoherent stimuli. Innate Immun. 22, 647–657 (2016).

    CAS  PubMed  Google Scholar 

  226. Granot, Z. & Jablonska, J. Distinct functions of neutrophil in cancer and its regulation. Mediators Inflamm. 2015, 701067 (2015).

    PubMed  PubMed Central  Google Scholar 

  227. Tormoen, G. W., Crittenden, M. R. & Gough, M. J. Role of the immunosuppressive microenvironment in immunotherapy. Adv. Radiat. Oncol. 3, 520–526 (2018).

    PubMed  PubMed Central  Google Scholar 

  228. Fu, C. & Jiang, A. Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front. Immunol. 9, 3059 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Oweida, A. et al. Resistance to radiotherapy and PD-L1 blockade is mediated by TIM-3 upregulation and regulatory T-cell infiltration. Clin. Cancer Res. 24, 5368–5380 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Limagne, E. et al. Tim-3/galectin-9 pathway and mMDSC control primary and secondary resistances to PD-1 blockade in lung cancer patients. Oncoimmunology 8, e1564505 (2019).

    PubMed  PubMed Central  Google Scholar 

  231. van Deventer, H. W. et al. The inflammasome component NLRP3 impairs antitumor vaccine by enhancing the accumulation of tumor-associated myeloid-derived suppressor cells. Cancer Res. 70, 10161–10169 (2010).

    PubMed  PubMed Central  Google Scholar 

  232. Tsuji, K. et al. Induction of immune response against NY-ESO-1 by CHP-NY-ESO-1 vaccination and immune regulation in a melanoma patient. Cancer Immunol. Immunother. 57, 1429–1437 (2008).

    PubMed  Google Scholar 

  233. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Demircioglu, F. et al. Cancer associated fibroblast FAK regulates malignant cell metabolism. Nat. Commun. 11, 1290 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Lakins, M. A., Ghorani, E., Munir, H., Martins, C. P. & Shields, J. D. Cancer-associated fibroblasts induce antigen-specific deletion of CD8+ T cells to protect tumour cells. Nat. Commun. 9, 948 (2018).

    PubMed  PubMed Central  Google Scholar 

  236. Chakravarthy, A., Khan, L., Bensler, N. P., Bose, P. & De Carvalho, D. D. TGF-beta-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 9, 4692 (2018).

    PubMed  PubMed Central  Google Scholar 

  237. Harryvan, T. J., Verdegaal, E. M. E., Hardwick, J. C. H., Hawinkels, L. & van der Burg, S. H. Targeting of the cancer-associated fibroblast-T-cell axis in solid malignancies. J. Clin. Med. 8, 1989 (2019).

    CAS  PubMed Central  Google Scholar 

  238. Oshi, M. et al. M1 macrophage and M1/M2 ratio defined by transcriptomic signatures resemble only part of their conventional clinical characteristics in breast cancer. Sci. Rep. 10, 16554 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Pathria, P., Louis, T. L. & Varner, J. A. Targeting tumor-associated macrophages in cancer. Trends Immunol. 40, 310–327 (2019).

    CAS  PubMed  Google Scholar 

  240. Engblom, C., Pfirschke, C. & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).

    CAS  PubMed  Google Scholar 

  241. Thoreau, M. et al. Vaccine-induced tumor regression requires a dynamic cooperation between T cells and myeloid cells at the tumor site. Oncotarget 6, 27832–27846 (2015).

    PubMed  PubMed Central  Google Scholar 

  242. van der Sluis, T. C. et al. Therapeutic peptide vaccine-induced CD8 T cells strongly modulate intratumoral macrophages required for tumor regression. Cancer Immunol. Res. 3, 1042–1051 (2015). Van der Sluis et al. (2015) and van Elsas et al. (2020) are important studies that show that vaccine efficacy is determined not only by the induction of tumour-specific T cells but also by the recruitment of myeloid effector cells by these vaccine-induced T cells, which are required to obtain full tumour cell growth control.

    PubMed  Google Scholar 

  243. van Elsas, M. et al. Host genetics and tumor environment determine the functional impact of neutrophils in mouse tumor models. J Immunother Cancer 8, e000877 (2020).

    PubMed  PubMed Central  Google Scholar 

  244. Ferris, R. L. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 375, 1856–1867 (2016).

    PubMed  PubMed Central  Google Scholar 

  245. Welters, M. J. P. et al. Intratumoral HPV16-specific t cells constitute a type I-oriented tumor microenvironment to improve survival in HPV16-driven oropharyngeal cancer. Clin. Cancer Res. 24, 634–647 (2018).

    CAS  PubMed  Google Scholar 

  246. Prat, A. et al. Immune-related gene expression profiling after PD-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 77, 3540–3550 (2017).

    CAS  PubMed  Google Scholar 

  247. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Liu, Z. et al. Novel effector phenotype of Tim-3+ regulatory t cells leads to enhanced suppressive function in head and neck cancer patients. Clin. Cancer Res. 24, 4529–4538 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Santegoets, S. J. et al. Tbet-positive regulatory T cells accumulate in oropharyngeal cancers with ongoing tumor-specific type 1 T cell responses. J. Immunother. Cancer 7, 14 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Matoba, T. et al. Regulatory T cells expressing abundant CTLA-4 on the cell surface with a proliferative gene profile are key features of human head and neck cancer. Int. J. Cancer 144, 2811–2822 (2019).

    CAS  PubMed  Google Scholar 

  251. Si, Y. et al. Multidimensional imaging provides evidence for down-regulation of T cell effector function by MDSC in human cancer tissue. Sci Immunol 4, eaaw9159 (2019).

    CAS  PubMed  Google Scholar 

  252. Oh, S. A. et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat. Cancer 1, 681–691 (2020).

    PubMed  Google Scholar 

  253. Verma, V. et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat. Immunol. 20, 1231–1243 (2019). The authors make the argument that for the best outcome ICI therapy should be administered after vaccination.

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Germano, G. et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 552, 116–120 (2017).

    CAS  PubMed  Google Scholar 

  255. Sharabi, A. B., Tran, P. T., Lim, M., Drake, C. G. & Deweese, T. L. Stereotactic radiation therapy combined with immunotherapy: augmenting the role of radiation in local and systemic treatment. Oncology 29, 331–340 (2015).

    PubMed  Google Scholar 

  256. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    CAS  PubMed  Google Scholar 

  257. Ma, L. et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 365, 162–168 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Akahori, Y. et al. Antitumor activity of CAR-T cells targeting the intracellular oncoprotein WT1 can be enhanced by vaccination. Blood 132, 1134–1145 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Forde, P. M. et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 378, 1976–1986 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Provencio-Pulla, M. et al. Neoadjuvant chemo/immunotherapy for the treatment of stages IIIA resectable non-small cell lung cancer (NSCLC): a phase II multicenter exploratory study — NADIM study-SLCG. J. Clin. Oncol. 36, 8521–8521 (2018).

    Google Scholar 

  261. Topalian, S. L. et al. Neoadjuvant nivolumab for patients with resectable merkel cell carcinoma in the CheckMate 358 trial. Journal of Clinical Oncology 38, 2476–2487 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Nalley, C. I-SPY 2 trial explores immune checkpoint plus PARP inhibitors in breast cancer. Oncol. Times 42, 37 (2020).

    Google Scholar 

  263. Chalabi, M. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 26, 566–576 (2020).

    CAS  PubMed  Google Scholar 

  264. Abdul Sater, H. et al. Neoadjuvant PROSTVAC prior to radical prostatectomy enhances T-cell infiltration into the tumor immune microenvironment in men with prostate cancer. J Immunother Cancer 8, e000655 (2020).

    PubMed  PubMed Central  Google Scholar 

  265. Subudhi, S. K. et al. Neoantigen responses, immune correlates, and favorable outcomes after ipilimumab treatment of patients with prostate cancer. Sci Transl Med 12, eaaz3577 (2020).

    CAS  PubMed  Google Scholar 

  266. Kranich, J. & Krautler, N. J. How follicular dendritic cells shape the B-cell antigenome. Front. Immunol. 7, 225 (2016).

    PubMed  PubMed Central  Google Scholar 

  267. Sautes-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

    CAS  PubMed  Google Scholar 

  268. Ahrends, T. et al. CD4+ T cell help confers a cytotoxic t cell effector program including coinhibitory receptor downregulation and increased tissue invasiveness. Immunity 47, 848–861 e845 (2017).

    CAS  PubMed  Google Scholar 

  269. Quezada, S. A. et al. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 207, 637–650 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Bogen, B., Fauskanger, M., Haabeth, O. A. & Tveita, A. CD4+ T cells indirectly kill tumor cells via induction of cytotoxic macrophages in mouse models. Cancer Immunol. Immunother. 68, 1865–1873 (2019).

    CAS  PubMed  Google Scholar 

  271. Sledzinska, A. et al. Regulatory T cells restrain interleukin-2- and Blimp-1-dependent acquisition of cytotoxic function by CD4+ T cells. Immunity 52, 151–166 e156 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Huffman, A. P., Lin, J. H., Kim, S. I., Byrne, K. T. & Vonderheide, R. H. CCL5 mediates CD40-driven CD4+ T cell tumor infiltration and immunity. JCI Insight 5, e137263 (2020).

    PubMed Central  Google Scholar 

  273. Greyer, M. et al. T cell help amplifies innate signals in CD8+ DCs for optimal CD8+ T cell priming. Cell Rep. 14, 586–597 (2016).

    CAS  PubMed  Google Scholar 

  274. Jiao, S. et al. Differences in tumor microenvironment dictate T helper lineage polarization and response to immune checkpoint therapy. Cell 179, 1177–1190 e1113 (2019).

    CAS  PubMed  Google Scholar 

  275. Bos, R. & Sherman, L. A. CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res. 70, 8368–8377 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Kishton, R. J., Sukumar, M. & Restifo, N. P. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 26, 94–109 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Restifo, N. P. & Gattinoni, L. Lineage relationship of effector and memory T cells. Curr. Opin. Immunol. 25, 556–563 (2013).

    CAS  PubMed  Google Scholar 

  278. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 e1020 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    CAS  PubMed  Google Scholar 

  280. Crespo, J., Sun, H., Welling, T. H., Tian, Z. & Zou, W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 25, 214–221 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Sukumar, M., Kishton, R. J. & Restifo, N. P. Metabolic reprograming of anti-tumor immunity. Curr. Opin. Immunol. 46, 14–22 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Yin, Z. et al. Targeting T cell metabolism in the tumor microenvironment: an anti-cancer therapeutic strategy. J. Exp. Clin. Cancer Res. 38, 403 (2019).

    PubMed  PubMed Central  Google Scholar 

  285. Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 701–703 (2016).

    CAS  PubMed  Google Scholar 

  286. Teijeira, A. et al. Metabolic consequences of T-cell costimulation in anticancer immunity. Cancer Immunol. Res. 7, 1564–1569 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.B. receives grants/research support from the NIH (R01 CA249175, R01 CA201189 and R01 AI081848), the Melanoma Research Alliance, the Cancer Research Institute, the Kimberly and Eric J. Waldman Department of Dermatology at the Icahn School of Medicine, the Ludwig Institute for Cancer Research, the Leukemia and Lymphoma Society, the Pershing Square Foundation, Regeneron Pharmaceuticals Inc., Dragonfly Therapeutics Inc. and Harbour Biomed Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript.

Corresponding author

Correspondence to Nina Bhardwaj.

Ethics declarations

Competing interests

C.J.M.M. is Chief Scientific Officer of ISA Pharmaceuticals in Leiden, Netherlands, a biotechology company aiming at commercial development of synthetic peptide-based therapeutic vaccines against cancers caused by high-risk human papillomaviruses and against non-viral cancers. He receives a salary as a full-time employee at ISA Pharmaceuticals and is a beneficiary of a management participation plan that goes into effect if the company reaches a predefined value inflection point in the future. C.J.M.M. is an inventor on several patents regarding the use of synthetic long peptides as therapeutic vaccines for treatment of premalignant and malignant lesions. S.H.v.d.B.is named as an inventor on a patent for the use of synthetic long peptides as a vaccine, serves as a paid member of the strategy board of ISA Pharmaceuticals and received honoraria as a consultant for PCI Biotech, IO Biotech and DC prime, which develop cancer vaccines. N.B. serves as an advisor/board member for Neon Therapeutics, Novartis, Avidea, Boehringer Ingelheim, Rome Therapeutics, Roswell Park Comprehensive Cancer Center, MD Anderson Cancer Center, BreakBio, Carisma Therapeutics, CureVac, Genotwin, BioNTech, Gilead and Tempest Therapeutics. N.B. is an extramural member of the Parker Institute of Cancer Immunotherapy. M.S. declares no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks D. Speiser and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Tumor Neoantigen Selection Alliance: https://www.parkerici.org/research-project/tumor-neoantigen-selection-alliance-tesla/

Glossary

Immunogenic cell death

(ICD). A type of cell death that entails the release of danger-associated molecular patterns to attract and activate immune cells and the release of antigens to be acquired by activated antigen-presenting cells and presented to T cells.

Danger-associated molecular patterns

Non-microbial endogenous factors released from dead or distressed cells that serve as activating ligands for innate immune receptors on antigen-presenting cells, prompting activation of antigen-presenting cells and secretion of cytokines and chemokines to recruit other immune cells.

Antigen cross-presentation

A specialized mechanism that allows select cells such as type 1 dendritic cells to process and present internalized exogenous antigens on MHC class I molecules to activate CD8+ T cells.

Sipuleucil-T

Dendritic cell-focused cell-based vaccine for hormone-refractory prostate cancer consisting of a prostate acid phosphatase, fused with GM-CSF, loaded ex vivo on blood cells partially enriched for dendritic cells.

‘Cold’ tumours

Non-inflamed tumours lacking the presence of immune cells, particularly cytotoxic T cells, in the tumour bed and the invasive margin.

Antigen spreading

A phenomenon where endogenous cellular immune responses develop against epitopes not targeted by the vaccine or immunotherapy.

Stimulator of interferon genes protein

(STING). An intracellular pattern recognition receptor activated by double-stranded DNA, cyclic GMP–AMP and microbial cyclic dinucleotides to induce a strong interferon response.

Talimogene laherparepvec

(TVec). An oncolytic virus therapy composed of herpes simplex virus type 1 modified to infect tumour cells and express GM-CSF, a cytokine known for promoting differentiation of dendritic cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, M., van der Burg, S.H., Melief, C.J.M. et al. Therapeutic cancer vaccines. Nat Rev Cancer 21, 360–378 (2021). https://doi.org/10.1038/s41568-021-00346-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-021-00346-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer