Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution of systemic therapy for stages I–III non-metastatic non-small-cell lung cancer

Abstract

The treatment goal for patients with early-stage lung cancer is cure. Multidisciplinary discussions of surgical resectability and medical operability determine the modality of definitive local treatment (surgery or radiotherapy) and the associated systemic therapies to further improve the likelihood of cure. Trial evidence supports cisplatin-based adjuvant therapy either after surgical resection or concurrently with radiotherapy. Consensus guidelines support neoadjuvant chemotherapy in lieu of adjuvant chemotherapy and carboplatin-based regimens for patients who are ineligible for cisplatin. The incorporation of newer agents, now standard for patients with stage IV lung cancer, into the curative therapy paradigm has lagged owing to inefficient trial designs, the lengthy follow-up needed to assess survival end points and a developmental focus on the advanced-stage disease setting. Surrogate end points, such as pathological response, are being studied and might shorten trial durations. In 2018, the anti-PD-L1 antibody durvalumab was approved for patients with stage III lung cancer after concurrent chemoradiotherapy. Since then, the study of targeted therapies and immunotherapies in patients with early-stage lung cancer has rapidly expanded. In this Review, we present the current considerations in the treatment of patients with early-stage lung cancer and explore the current and future state of clinical research to develop systemic therapies for non-metastatic lung cancer.

Key points

  • Cisplatin-based adjuvant chemotherapy remains the standard of care for patients with resected high-risk non-metastatic non-small-cell lung cancer (NSCLC).

  • Anti-PD-L1 therapy with durvalumab after concurrent chemotherapy and radiotherapy for unresectable or inoperable non-metastatic NSCLC improves overall survival.

  • Osimertinib for 3 years after standard adjuvant therapy improves disease-free survival in patients with NSCLC harbouring EGFR mutations.

  • Immunotherapy is being extensively studied in the preoperative and postoperative settings.

  • Novel clinical trial designs are needed to accelerate advances in the treatment of patients with curable NSCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Treatment of metastatic and non-metastatic NSCLC.
Fig. 2: Graphic depiction of a definitive proton radiotherapy dose distribution in a patient with stage IIIC non-small-cell lung cancer.

Similar content being viewed by others

References

  1. Shapiro, M. et al. Predictors of major morbidity and mortality after pneumonectomy utilizing the Society for Thoracic Surgeons General Thoracic Surgery Database. Ann. Thorac. Surg. 90, 927–934 (2010).

    Article  PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    Article  PubMed  Google Scholar 

  3. Bade, B. C. & Dela Cruz, C. S. Lung cancer 2020: epidemiology, etiology, and prevention. Clin. Chest Med. 41, 1–24 (2020).

    Article  PubMed  Google Scholar 

  4. Fischer, B. et al. Preoperative staging of lung cancer with combined PET-CT. N. Engl. J. Med. 361, 32–39 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).

    Article  PubMed  Google Scholar 

  6. Pagès, P. B. et al. Impact of video-assisted thoracic surgery approach on postoperative mortality after lobectomy in octogenarians. J. Thorac. Cardiovasc. Surg. 157, 1660–1667 (2019).

    Article  PubMed  Google Scholar 

  7. Hristov, B. et al. Minimally invasive lobectomy is associated with lower noncancer-specific mortality in elderly patients: a propensity score matched competing risks analysis. Ann. Surg. 270, 1161–1169 (2019).

    Article  PubMed  Google Scholar 

  8. Goldstraw, P. et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (Eighth) edition of the TNM classification for lung cancer. J. Thorac. Oncol. 11, 39–51 (2016).

    Article  PubMed  Google Scholar 

  9. Yang, C. F. et al. Use and outcomes of minimally invasive lobectomy for Stage I non-small cell lung cancer in the National Cancer Data Base. Ann. Thorac. Surg. 101, 1037–1042 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chun, S. G. et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 Randomized Clinical Trial. J. Clin. Oncol. 35, 56–62 (2017).

    Article  PubMed  Google Scholar 

  11. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): non-small cell lung cancer (NCCN, 2021).

  12. Garon, E. B. et al. Five-year overall survival for patients with advanced nonsmall-cell lung cancer treated with pembrolizumab: results from the phase I KEYNOTE-001 study. J. Clin. Oncol. 37, 2518–2527 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Um, S. W. et al. Endobronchial ultrasound versus mediastinoscopy for mediastinal nodal staging of non-small-cell lung cancer. J. Thorac. Oncol. 10, 331–337 (2015).

    Article  PubMed  Google Scholar 

  14. Vansteenkiste, J. et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24, vi89–vi98 (2013).

    Article  PubMed  Google Scholar 

  15. Planchard, D. et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv192–iv237 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Curioni-Fontecedro, A. et al. Preoperative chemotherapy and radiotherapy concomitant to cetuximab in resectable stage IIIB NSCLC: a multicentre phase 2 trial (SAKK 16/08). Br. J. Cancer 120, 968–974 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kocher, F. et al. Multicenter phase II study evaluating docetaxel and cisplatin as neoadjuvant induction regimen prior to surgery or radiochemotherapy with docetaxel, followed by adjuvant docetaxel therapy in chemonaive patients with NSCLC stage II, IIIA and IIIB (TAX-AT 1.203 Trial). Lung Cancer 85, 395–400 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Kearney, D. J., Lee, T. H., Reilly, J. J., DeCamp, M. M. & Sugarbaker, D. J. Assessment of operative risk in patients undergoing lung resection. Importance predicted pulmonary function. Chest 105, 753–759 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, J., Olak, J. & Ferguson, M. K. Diffusing capacity predicts operative mortality but not long-term survival after resection for lung cancer. J. Thorac. Cardiovasc. Surg. 117, 581–586 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Bousamra, M. 2nd et al. Early and late morbidity in patients undergoing pulmonary resection with low diffusion capacity. Ann. Thorac. Surg. 62, 968–974 (1996).

    Article  PubMed  Google Scholar 

  21. Datta, D. & Lahiri, B. Preoperative evaluation of patients undergoing lung resection surgery. Chest 123, 2096–2103 (2003).

    Article  PubMed  Google Scholar 

  22. Burke, J. R., Duarte, I. G., Thourani, V. H. & Miller, J. I. Preoperative risk assessment for marginal patients requiring pulmonary resection. Ann. Thorac. Surg. 76, 1767–1773 (2003).

    Article  PubMed  Google Scholar 

  23. Timmerman, R. et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303, 1070–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Videtic, G. M. et al. A randomized phase 2 study comparing 2 stereotactic body radiation therapy schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer: NRG oncology RTOG 0915 (NCCTG N0927). Int. J. Radiat. Oncol. Biol. Phys. 93, 757–764 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ball, D. et al. Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): a phase 3, open-label, randomised controlled trial. Lancet Oncol. 20, 494–503 (2019).

    Article  PubMed  Google Scholar 

  26. Senthi, S., Lagerwaard, F. J., Haasbeek, C. J., Slotman, B. J. & Senan, S. Patterns of disease recurrence after stereotactic ablative radiotherapy for early stage non-small-cell lung cancer: a retrospective analysis. Lancet Oncol. 13, 802–809 (2012).

    Article  PubMed  Google Scholar 

  27. Leeman, J. E. et al. Histologic subtype in core lung biopsies of early-stage lung adenocarcinoma is a prognostic factor for treatment response and failure patterns after stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol Phys. 97, 138–145 (2017).

    Article  PubMed  Google Scholar 

  28. Kohutek, Z. A. et al. FDG-PET maximum standardized uptake value is prognostic for recurrence and survival after stereotactic body radiotherapy for non-small cell lung cancer. Lung Cancer 89, 115–120 (2015).

    Article  PubMed  Google Scholar 

  29. Cuaron, J. J. et al. Stereotactic body radiation therapy for primary lung cancers>3 centimeters. J. Thorac. Oncol. 8, 1396–1401 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Antonia, S. J. et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N. Engl. J. Med. 377, 1919–1929 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Bradley, J. D. et al. Long-term results of NRG oncology RTOG 0617: standard- versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non-small-cell lung cancer. J. Clin. Oncol. 38, 706–714 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Vokes, E. E. et al. Induction chemotherapy followed by chemoradiotherapy compared with chemoradiotherapy alone for regionally advanced unresectable stage III Non-small-cell lung cancer: Cancer and Leukemia Group B. J. Clin. Oncol. 25, 1698–1704 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Hanna, N. et al. Phase III study of cisplatin, etoposide, and concurrent chest radiation with or without consolidation docetaxel in patients with inoperable stage III non-small-cell lung cancer: the Hoosier Oncology Group and U.S. Oncology. J. Clin. Oncol. 26, 5755–5760 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Tsujino, K. et al. Is consolidation chemotherapy after concurrent chemo-radiotherapy beneficial for patients with locally advanced non-small-cell lung cancer? A pooled analysis of the literature. J. Thorac. Oncol. 8, 1181–1189 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Bradley, J. D. et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 16, 187–199 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thor, M. et al. Modeling the impact of cardiopulmonary irradiation on overall survival in NRG oncology Trial RTOG 0617. Clin. Cancer Res. 26, 4643–4650 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Senan, S. et al. PROCLAIM: randomized phase III trial of pemetrexed-cisplatin or etoposide-cisplatin plus thoracic radiation therapy followed by consolidation chemotherapy in locally advanced nonsquamous non-small-cell lung cancer. J. Clin. Oncol. 34, 953–962 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Faivre-Finn, C. et al. LBA49 Durvalumab after chemoradiotherapy in stage III NSCLC: 4-year survival update from the phase III PACIFIC trial. Ann. Oncol. 31 (Suppl. 4), S1142–S1215 (2020).

    Google Scholar 

  40. Paz-Ares, L. et al. Outcomes with durvalumab by tumour PD-L1 expression in unresectable, stage III non-small-cell lung cancer in the PACIFIC trial. Ann. Oncol. 31, 798–806 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Raben, D. et al. Patterns of disease progression with durvalumab in stage III non-small cell lung cancer (PACIFIC). Int. J. Radiat. Oncol. 105, 683 (2019).

    Article  Google Scholar 

  42. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04214262 (2020).

  43. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03833154 (2020).

  44. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00686166 (2018).

  45. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03519971 (2020).

  46. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04026412 (2020).

  47. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03693300 (2020).

  48. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03521154 (2020).

  49. Marks, L. B. et al. Radiation dose-volume effects in the lung. Int. J. Radiat. Oncol. Biol. Phys. 76 (Suppl. 3), S70–S76 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Thor, M. et al. Toward personalized dose-prescription in locally advanced non-small cell lung cancer: Validation of published normal tissue complication probability models. Radiother. Oncol. 138, 45–51 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Speirs, C. K. et al. Heart dose is an independent dosimetric predictor of overall survival in locally advanced non-small cell lung cancer. J. Thorac. Oncol. 12, 293–301 (2017).

    Article  PubMed  Google Scholar 

  52. Xue, J. et al. Validity of current stereotactic body radiation therapy dose constraints for aorta and major vessels. Semin. Radiat. Oncol. 26, 135–139 (2016).

    Article  PubMed  Google Scholar 

  53. Dehing-Oberije, C. et al. Development, external validation and clinical usefulness of a practical prediction model for radiation-induced dysphagia in lung cancer patients. Radiother. Oncol. 97, 455–461 (2010).

    Article  PubMed  Google Scholar 

  54. Werner-Wasik, M., Yorke, E., Deasy, J., Nam, J. & Marks, L. B. Radiation dose-volume effects in the esophagus. Int. J. Radiat. Oncol. Biol. Phys. 76 (Suppl. 3), S86–S93 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sung, S., Son, S. H., Park, E. Y. & Kay, C. S. Prognosis of locally advanced rectal cancer can be predicted more accurately using pre- and post-chemoradiotherapy neutrophil-lymphocyte ratios in patients who received preoperative chemoradiotherapy. PLoS ONE 12, e0173955 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Scilla, K. A. et al. Neutrophil-lymphocyte ratio is a prognostic marker in patients with locally advanced (Stage IIIA and IIIB) non-small cell lung cancer treated with combined modality therapy. Oncologist 22, 737–742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thor, M. et al. Are unsatisfactory outcomes after concurrent chemoradiotherapy for locally advanced non-small cell lung cancer due to treatment-related immunosuppression? Radiother. Oncol. 143, 51–57 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Tang, C. et al. Lymphopenia association with gross tumor volume and lung v5 and its effects on non-small cell lung cancer patient outcomes. Int. J. Radiat. Oncol. Biol. Phys. 89, 1084–1091 (2014).

    Article  PubMed  Google Scholar 

  59. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01993810 (2018).

  60. Travis, W. D. et al. The IASLC lung cancer staging project: proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer. J. Thorac. Oncol. 11, 1204–1223 (2016).

    Article  PubMed  Google Scholar 

  61. Nicholson, A. G. et al. The International Association for the study of lung cancer lung cancer staging project: proposals for the revision of the clinical and pathologic staging of small cell lung cancer in the forthcoming eighth edition of the TNM classification for lung cancer. J. Thorac. Oncol. 11, 300–311 (2016).

    Article  PubMed  Google Scholar 

  62. Wu, Y. L. et al. Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N. Engl. J. Med. 383, 1711–1723 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Bradbury, P. et al. Postoperative adjuvant systemic therapy in completely resected non-small-cell lung cancer: a systematic review. Clin. Lung Cancer 18, 259–273.e258 (2017).

    Article  PubMed  Google Scholar 

  64. Pignon, J. P. et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J. Clin. Oncol. 26, 3552–3559 (2008).

    Article  PubMed  Google Scholar 

  65. Hamada, C. et al. Meta-analysis of postoperative adjuvant chemotherapy with tegafur-uracil in non-small-cell lung cancer. J. Clin. Oncol. 23, 4999–5006 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Scagliotti, G. V. et al. Randomized study of adjuvant chemotherapy for completely resected stage I, II, or IIIA non-small-cell Lung cancer. J. Natl Cancer Inst. 95, 1453–1461 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Winton, T. et al. Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N. Engl. J. Med. 352, 2589–2597 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Arriagada, R. et al. Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: two meta-analyses of individual patient data. Lancet 375, 1267–1277 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Le Pechoux, C. et al. LBA3_PR An international randomized trial, comparing post-operative conformal radiotherapy (PORT) to no PORT, in patients with completely resected non-small cell lung cancer (NSCLC) and mediastinal N2 involvement: primary end-point analysis of LungART (IFCT-0503, UK NCRI, SAKK) NCT00410683. Ann. Oncol. 31, (Suppl. 4) S1178 (2020).

    Article  Google Scholar 

  70. Nsclc Meta-analysis Collaborative Group. Preoperative chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual participant data. Lancet 383, 1561–1571 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  71. Kato, H. et al. A randomized trial of adjuvant chemotherapy with uracil-tegafur for adenocarcinoma of the lung. N. Engl. J. Med. 350, 1713–1721 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Hamada, C. et al. Effect of postoperative adjuvant chemotherapy with tegafur-uracil on survival in patients with stage IA non-small cell lung cancer: an exploratory analysis from a meta-analysis of six randomized controlled trials. J. Thorac. Oncol. 4, 1511–1516 (2009).

    Article  PubMed  Google Scholar 

  73. Petrelli, F. & Barni, S. Non-cancer-related mortality after cisplatin-based adjuvant chemotherapy for non-small cell lung cancer: a study-level meta-analysis of 16 randomized trials. Med. Oncol. 30, 641 (2013).

    Article  PubMed  CAS  Google Scholar 

  74. Wakelee, H. A. et al. Adjuvant chemotherapy with or without bevacizumab in patients with resected non-small-cell lung cancer (E1505): an open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 18, 1610–1623 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Douillard, J. Y. et al. Adjuvant cisplatin and vinorelbine for completely resected non-small cell lung cancer: subgroup analysis of the lung adjuvant cisplatin evaluation. J. Thorac. Oncol. 5, 220–228 (2010).

    Article  PubMed  Google Scholar 

  76. Pepe, C. et al. Adjuvant vinorelbine and cisplatin in elderly patients: National Cancer Institute of Canada and Intergroup Study JBR.10. J. Clin. Oncol. 25, 1553–1561 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Kenmotsu, H. et al. Randomized phase III study of pemetrexed plus cisplatin versus vinorelbine plus cisplatin for completely resected stage II to IIIA nonsquamous non-small-cell lung cancer. J. Clin. Oncol. 38, 2187–2196 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Kris, M. G. et al. Adjuvant systemic therapy and adjuvant radiation therapy for stage I to IIIA completely resected non-small-cell lung cancers: American Society of Clinical Oncology/Cancer Care Ontario Clinical Practice Guideline Update. J. Clin. Oncol. 35, 2960–2974 (2017).

    Article  PubMed  Google Scholar 

  79. Vansteenkiste, J. F. et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 17, 822–835 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Chan, B. A. & Hughes, B. G. M. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl. Lung Cancer Res. 4, 36–54 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Zhong, W. Z. et al. Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II-IIIA (N1-N2) EGFR-mutant NSCLC (ADJUVANT/CTONG1104): a randomised, open-label, phase 3 study. Lancet Oncol. 19, 139–148 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Arriagada, R. et al. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N. Engl. J. Med. 350, 351–360 (2004).

    Article  PubMed  Google Scholar 

  84. Felip, E. et al. Preoperative chemotherapy plus surgery versus surgery plus adjuvant chemotherapy versus surgery alone in early-stage non-small-cell lung cancer. J. Clin. Oncol. 28, 3138–3145 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Betticher, D. C. et al. Mediastinal lymph node clearance after docetaxel-cisplatin neoadjuvant chemotherapy is prognostic of survival in patients with stage IIIA pN2 non-small-cell lung cancer: a multicenter phase II trial. J. Clin. Oncol. 21, 1752–1759 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Blumenthal, G. M. et al. Current status and future perspectives on neoadjuvant therapy in lung cancer. J. Thorac. Oncol. 13, 1818–1831 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Chaft, J. E. et al. Adaptive neoadjuvant chemotherapy guided by 18F-FDG PET in resectable non-small cell lung cancers: the NEOSCAN trial. J. Thorac. Oncol. 11, 537–544 (2016).

    Article  PubMed  Google Scholar 

  88. Blakely, C. M. & McCoach, C. E. Role of MPR as an early signal for efficacy in neoadjuvant studies. Clin. Cancer Res. 26, 3499–3500 (2020).

    Article  PubMed  Google Scholar 

  89. Chiang, A. C. & Herbst, R. S. Frontline immunotherapy for NSCLC — the tale of the tail. Nat. Rev. Clin. Oncol. 17, 73–74 (2020).

    Article  PubMed  Google Scholar 

  90. Topalian, S. L., Taube, J. M. & Pardoll, D. M. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 367, eaax0182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Forde, P. M. et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 378, 1976–1986 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02927301 (2020).

  94. Kwiatkowski, D. J. et al. Neoadjuvant atezolizumab in resectable non-small cell lung cancer (NSCLC): Interim analysis and biomarker data from a multicenter study (LCMC3). J. Clin. Oncol. 37 (Suppl. 15), 8503 (2019).

    Article  Google Scholar 

  95. Gao, S. et al. Neoadjuvant PD-1 inhibitor (Sintilimab) in NSCLC. J. Thorac. Oncol. 15, 816–826 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Cascone, T. et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial. Nat. Med. 27, 504–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Herbst, R. S. & Sznol, M. Diminished but not dead: chemotherapy for the treatment of NSCLC. Lancet Oncol. 17, 1464–1465 (2016).

    Article  PubMed  Google Scholar 

  98. Parra, E. R. et al. Effect of neoadjuvant chemotherapy on the immune microenvironment in non-small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches. J. Immunother. Cancer 6, 48 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Gadgeel, S. et al. Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non–small-cell lung cancer. J. Clin. Oncol. 38, 1505–1517 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Paz-Ares, L. et al. A randomized, placebo-controlled trial of pembrolizumab plus chemotherapy in patients with metastatic squamous NSCLC: protocol-specified final analysis of KEYNOTE-407. J. Thorac. Oncol. 15, 1657–1669 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Reck, M. et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir. Med. 7, 387–401 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Shu, C. A. et al. Neoadjuvant atezolizumab and chemotherapy in patients with resectable non-small-cell lung cancer: an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 21, 786–795 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Provencio, M. et al. Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (NADIM): an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 21, 1413–1422 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Rothschild, S. et al. SAKK 16/14: Anti-PD-L1 antibody durvalumab in addition to neoadjuvant chemotherapy in patients with stage IIIA(N2) non-small cell lung cancer (NSCLC) — A multicenter single-arm phase II trial. J. Clin. Oncol. 38, 9016–9016 (2020).

    Article  Google Scholar 

  105. Bristol Myers Squibb. Opdivo (nivolumab) plus chemotherapy shows statistically significant improvement in pathologic complete response as neoadjuvant treatment of resectable non-small cell lung cancer in phase 3 CheckMate -816 trial. Businesswire https://www.businesswire.com/news/home/20201007005273/en/ (2020).

  106. Mayekar, M. K. & Bivona, T. G. Current landscape of targeted therapy in lung cancer. Clin. Pharmacol. Ther. 102, 757–764 (2017).

    Article  PubMed  Google Scholar 

  107. Zhong, W. Z. et al. Erlotinib versus gemcitabine plus cisplatin as neoadjuvant treatment of stage IIIA-N2 EGFR-mutant non-small-cell lung cancer (EMERGING-CTONG 1103): a randomized phase II study. J. Clin. Oncol. 37, 2235–2245 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04351555 (2020).

  109. Rusch, V. W. et al. Induction chemoradiation and surgical resection for non-small cell lung carcinomas of the superior sulcus: initial results of Southwest Oncology Group Trial 9416 (Intergroup Trial 0160). J. Thorac. Cardiovasc. Surg. 121, 472–483 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Rusch, V. W. et al. Induction chemoradiation and surgical resection for superior sulcus non-small-cell lung carcinomas: long-term results of Southwest Oncology Group Trial 9416 (Intergroup Trial 0160). J. Clin. Oncol. 25, 313–318 (2007).

    Article  PubMed  Google Scholar 

  111. Robinson, L. A. et al. Induction chemoradiotherapy versus chemotherapy alone for superior sulcus lung cancer. Lung Cancer 122, 206–213 (2018).

    Article  PubMed  Google Scholar 

  112. Thomas, M. et al. Effect of preoperative chemoradiation in addition to preoperative chemotherapy: a randomised trial in stage III non-small-cell lung cancer. Lancet Oncol. 9, 636–648 (2008).

    Article  PubMed  Google Scholar 

  113. Pless, M. et al. Induction chemoradiation in stage IIIA/N2 non-small-cell lung cancer: a phase 3 randomised trial. Lancet 386, 1049–1056 (2015).

    Article  PubMed  Google Scholar 

  114. Billiet, C. et al. Modern post-operative radiotherapy for stage III non-small cell lung cancer may improve local control and survival: a meta-analysis. Radiother. Oncol. 110, 3–8 (2014).

    Article  PubMed  Google Scholar 

  115. Mikell, J. L. et al. Postoperative radiotherapy is associated with better survival in non-small cell lung cancer with involved N2 lymph nodes: results of an analysis of the National Cancer Data Base. J. Thorac. Oncol. 10, 462–471 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Corso, C. D. et al. Re-evaluation of the role of postoperative radiotherapy and the impact of radiation dose for non-small-cell lung cancer using the National Cancer Database. J. Thorac. Oncol. 10, 148–155 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Robinson, C. G. et al. Postoperative radiotherapy for pathologic N2 non-small-cell lung cancer treated with adjuvant chemotherapy: a review of the National Cancer Data Base. J. Clin. Oncol. 33, 870–876 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Govindan, R. et al. ALCHEMIST trials: a golden opportunity to transform outcomes in early-stage non-small cell lung cancer. Clin. Cancer Res. 21, 5439–5444 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Johnson, J. R., Williams, G. & Pazdur, R. End points and United States Food and Drug Administration approval of oncology drugs. J. Clin. Oncol. 21, 1404–1411 (2003).

    Article  PubMed  Google Scholar 

  120. Mauguen, A. et al. Surrogate endpoints for overall survival in chemotherapy and radiotherapy trials in operable and locally advanced lung cancer: a re-analysis of meta-analyses of individual patients’ data. Lancet Oncol. 14, 619–626 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pataer, A. et al. Histopathologic response criteria predict survival of patients with resected lung cancer after neoadjuvant chemotherapy. J. Thorac. Oncol. 7, 825–832 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cascone, T. et al. Induction cisplatin docetaxel followed by surgery and erlotinib in non-small cell lung cancer. Ann. Thorac. Surg. 105, 418–424 (2018).

    Article  PubMed  Google Scholar 

  123. Chaft, J. E. et al. Phase II trial of neoadjuvant bevacizumab plus chemotherapy and adjuvant bevacizumab in patients with resectable nonsquamous non-small-cell lung cancers. J. Thorac. Oncol. 8, 1084–1090 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cascone, T. et al. A phase I/II study of neoadjuvant cisplatin, docetaxel, and nintedanib for resectable non-small cell lung cancer. Clin. Cancer Res. 26, 3525–3536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hellmann, M. D. et al. Pathological response after neoadjuvant chemotherapy in resectable non-small-cell lung cancers: proposal for the use of major pathological response as a surrogate endpoint. Lancet Oncol. 15, e42–e50 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Travis, W. D. et al. IASLC multidisciplinary recommendations for pathologic assessment of lung cancer resection specimens after neoadjuvant therapy. J. Thorac. Oncol. 15, 709–740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chaudhuri, A. A. et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov. 7, 1394–1403 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Li, B. T. et al. Liquid biopsy for ctDNA to revolutionize the care of patients with early stage lung cancers. Ann. Transl. Med. 5, 479 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04385368 (2020).

  130. Howlader, N. et al. The effect of advances in lung-cancer treatment on population mortality. N. Engl. J. Med. 383, 640–649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Song, W.-A. et al. Survival benefit of neoadjuvant chemotherapy in non-small cell lung cancer: an updated meta-analysis of 13 randomized control trials. J. Thorac. Oncol. 5, 510–516 (2010).

    Article  PubMed  Google Scholar 

  132. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02201992 (2020).

  133. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02193282 (2020).

  134. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02595944 (2020).

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02504372 (2020).

  136. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02486718 (2020).

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02273375 (2020).

  138. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03447769 (2020).

  139. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03800134 (2020).

  140. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03456063 (2020).

  141. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03425643 (2020).

  142. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02998528 (2020).

Download references

Acknowledgements

We would like to thank C. Wilhelm for critically reading the manuscript and for editorial contributions and A. F. Shepherd for contributions to Fig. 2. The work of the authors is supported in part by an NIH grant P30 CA008748 to Memorial Sloan Kettering Cancer Center. T.C. is the recipient of an ASCO Career Development Award and her work is partially supported by the NIH grant P30 CA016672 to the University of Texas MD Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of content, wrote the manuscript, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jamie E. Chaft.

Ethics declarations

Competing interests

J.E.C. reports consulting fees from AstraZeneca, Bristol–Myers Squibb, Flame Biosciences, Genentech, Merck, and Novartis and clinical research funding to Memorial Sloan Kettering Cancer Center from AstraZeneca, Bristol–Myers Squibb, Genentech and Merck. A.R. reports grants from Boehringer Ingelheim, Pfizer, and Varian Medical Systems, grants and personal fees from AstraZeneca and Merck, personal fees from Cybrexa, More Health and Research to Practice, and non-financial support from Philips–Elekta, outside the submitted work. W.W. reports advisory board and speaker fees from AstraZeneca as well as teaching grant and speaker fees from Covidien–Medtronic. M.G.K. reports personal fees from AstraZeneca, Daiichi–Sankyo, Pfizer and Regeneron from outside the submitted work and honoraria for participation in educational programmes from AstraZeneca, AXIS, Carvive Systems, Creative Educational Concepts, i3 Health, Intellisphere, OncLive, Paradigm Medical Communications, Peerview, Physicians Education Resources, Prime Oncology, Research to Practice and WebMD. Funds for travel and lodging as well as food and beverage have been provided by AstraZeneca, Genentech, Pfizer and Regeneron. M.G.K. is an employee of Memorial Sloan Kettering. Memorial Sloan Kettering has received research funding from Genentech Roche, the Lung Cancer Research Foundation, the US National Cancer Institute and PUMA Biotechnology for research conducted by M.G.K. Memorial Sloan Kettering has licensed testing for EGFR T790M to MolecularMD. T.C. reports consulting fees from Bristol–Myers Squibb and MedImmune–AstraZeneca, advisory role fees from Bristol–Myers Squibb and EMD Serono, and clinical research funding to MD Anderson Cancer Center from Boehringer Ingelheim, Bristol–Myers Squibb, EMD Serono, and MedImmune–AstraZeneca. C.G.A. declares no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks P. Forde, S. Ramalingam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaft, J.E., Rimner, A., Weder, W. et al. Evolution of systemic therapy for stages I–III non-metastatic non-small-cell lung cancer. Nat Rev Clin Oncol 18, 547–557 (2021). https://doi.org/10.1038/s41571-021-00501-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00501-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing