Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Follow-up of differentiated thyroid cancer – what should (and what should not) be done

Abstract

The treatment paradigm for thyroid cancer has shifted from a one-size-fits-all approach to more personalized protocols that range from active surveillance to total thyroidectomy followed by radioiodine remnant ablation. Accurate surveillance tools are available, but follow-up protocols vary widely between centres and clinicians, owing to the lack of clear, straightforward recommendations on the instruments and assessment schedule that health-care professionals should adopt. For most patients (that is, those who have had an excellent response to the initial treatment and have a low or intermediate risk of tumour recurrence), an infrequent assessment schedule is sufficient (such as a yearly determination of serum levels of TSH and thyroglobulin). Select patients will benefit from second-line imaging and more frequent assessments. This Review discusses the strengths and weaknesses of the surveillance tools and follow-up strategies that clinicians use as a function of the initial treatment and each patient’s risk of recurrence.

Key points

  • Thyroid cancer follow-up varies according to the histotype, the initial treatment, the initial risk of recurrence and the response to treatment.

  • An excellent response to the initial treatment is defined by an undetectable serum thyroglobulin in the absence of thyroglobulin antibody and the absence of abnormal findings on neck ultrasonography.

  • Patients with a low or intermediate risk of disease recurrence who have an excellent response to treatment can be followed up with yearly serum TSH, thyroglobulin and anti-thyroglobulin antibody determination.

  • When serum levels of thyroglobulin (or anti-thyroglobulin antibody titre) have a rising trend with time, ultrasonographic, cross-sectional or functional imaging should be considered according to the patient’s risk and local resources.

  • Patients with a high risk of disease recurrence who do not respond excellently to treatment should be followed up with serum TSH, thyroglobulin and anti-thyroglobulin antibody determination and neck ultrasonography every 6–12 months.

  • When untreated, structural disease should be followed up with periodic imaging, with the frequency and the imaging tools depending on disease burden, location and pace of disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Follow-up protocols for patients with papillary thyroid cancer.

Similar content being viewed by others

References

  1. Fagin, J. A. & Wells, S. A. Jr. Biologic and clinical perspectives on thyroid cancer. N. Engl. J. Med. 375, 1054–1067 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Davies, L. & Welch, H. G. Current thyroid cancer trends in the United States. JAMA Otolaryngol. Head Neck Surg. 140, 317–322 (2014).

    Google Scholar 

  3. Vaccarella, S. et al. The impact of diagnostic changes on the rise in thyroid cancer incidence: a population-based study in selected high-resource countries. Thyroid 25, 1127–1136 (2015).

    Article  PubMed  Google Scholar 

  4. Grani, G. et al. Lack of association between obesity and aggressiveness of differentiated thyroid cancer. J. Endocrinol. Invest. https://doi.org/10.1007/s40618-018-0889-x (2018).

  5. Lim, H., Devesa, S. S., Sosa, J. A., Check, D. & Kitahara, C. M. Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA 317, 1338–1348 (2017).

    Article  PubMed  Google Scholar 

  6. Cabanillas, M. E., McFadden, D. G. & Durante, C. Thyroid cancer. Lancet 388, 2783–2795 (2016).

    Article  PubMed  CAS  Google Scholar 

  7. Ito, Y. et al. An observational trial for papillary thyroid microcarcinoma in Japanese patients. World J. Surg. 34, 28–35 (2010).

    Article  PubMed  Google Scholar 

  8. Tuttle, R. M. et al. Natural history and tumor volume kinetics of papillary thyroid cancers during active surveillance. JAMA Otolaryngol. Head Neck Surg. 143, 1015–1020 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Adam, M. A. et al. Impact of extent of surgery on survival for papillary thyroid cancer patients younger than 45 years. J. Clin. Endocrinol. Metab. 100, 115–121 (2015).

    Article  PubMed  CAS  Google Scholar 

  10. Lamartina, L. et al. Are evidence-based guidelines reflected in clinical practice? An analysis prospectively collected data of the Italian Thyroid Cancer Observatory. Thyroid 27, 1490–1497 (2017).

    Article  PubMed  Google Scholar 

  11. Lamartina, L., Durante, C., Filetti, S. & Cooper, D. S. Low-risk differentiated thyroid cancer and radioiodine remnant ablation: a systematic review of the literature. J. Clin. Endocrinol. Metab. 100, 1748–1761 (2015).

    Article  PubMed  CAS  Google Scholar 

  12. Biondi, B. & Cooper, D. S. Benefits of thyrotropin suppression versus the risks of adverse effects in differentiated thyroid cancer. Thyroid 20, 135–146 (2010).

    Article  PubMed  CAS  Google Scholar 

  13. Durante, C. et al. Identification and optimal postsurgical follow-up of patients with very low-risk papillary thyroid microcarcinomas. J. Clin. Endocrinol. Metab. 95, 4882–4888 (2010).

    Article  PubMed  CAS  Google Scholar 

  14. Schlumberger, M. et al. Outcome after ablation in patients with low-risk thyroid cancer (ESTIMABL1): 5-year follow-up results of a randomised, phase 3, equivalence trial. Lancet Diabetes Endocrinol. https://doi.org/10.1016/s2213-8587(18)30113-x (2018). This is a prospective study with a 5-year follow-up of patients with DTC that demonstrates the low risk of recurrence irrespective of the thyroid remnant ablation protocol.

  15. Wang, L. Y. et al. Cost-effectiveness analysis of papillary thyroid cancer surveillance. Cancer 121, 4132–4140 (2015). This study highlights the increased cost per recurrence detected if the same protocol is applied to low-risk patients with PTC compared with intermediate-risk and high-risk patients.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tuttle, R. M., Haugen, B. & Perrier, N. D. Updated American Joint Committee on cancer/tumor-node-metastasis staging system for differentiated and anaplastic thyroid cancer (Eighth edition): what changed and why? Thyroid 27, 751–756 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim, T. H. et al. Prognostic value of the eighth edition AJCC TNM classification for differentiated thyroid carcinoma. Oral Oncol. 71, 81–86 (2017).

    Article  PubMed  Google Scholar 

  18. Pontius, L. N. et al. Projecting survival in papillary thyroid cancer: a comparison of the seventh and eighth editions of the American Joint Commission on cancer/union for international cancer control staging systems in two contemporary national patient cohorts. Thyroid 27, 1408–1416 (2017).

    Article  PubMed  Google Scholar 

  19. Lamartina, L. et al. 8th edn of AJCC/TNM staging system of thyroid cancer: what to expect. Endocr. Relat. Cancer https://doi.org/10.1530/ERC-17-0453 (2017).

  20. Verburg, F. A., Mader, U., Reiners, C. & Hanscheid, H. Long-term survival in differentiated thyroid cancer is worse after low-activity initial post-surgical 131I therapy in both high- and low-risk patients. J. Clin. Endocrinol. Metab. 99, 4487–4496 (2014).

    Article  PubMed  CAS  Google Scholar 

  21. Links, T. P. et al. Life expectancy in differentiated thyroid cancer: a novel approach to survival analysis. Endocr. Relat. Cancer 12, 273–280 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. Durante, C. et al. Papillary thyroid cancer: time course of recurrences during postsurgery surveillance. J. Clin. Endocrinol. Metab. 98, 636–642 (2013). This paper provides a picture of recurrence timing during the follow-up of DTC and provides a foundation for the design of more cost-effective surveillance protocols.

    Article  PubMed  CAS  Google Scholar 

  23. Tuttle, R. M. et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid 20, 1341–1349 (2010).

    Article  PubMed  CAS  Google Scholar 

  24. Haugen, B. R. et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid 26, 1–133 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nixon, I. J. et al. The impact of microscopic extrathyroid extension on outcome in patients with clinical T1 and T2 well-differentiated thyroid cancer. Surgery 150, 1242–1249 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Leboulleux, S. et al. Prognostic factors for persistent or recurrent disease of papillary thyroid carcinoma with neck lymph node metastases and/or tumor extension beyond the thyroid capsule at initial diagnosis. J. Clin. Endocrinol. Metab. 90, 5723–5729 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. Randolph, G. W. et al. The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid 22, 1144–1152 (2012).

    Article  PubMed  Google Scholar 

  28. Vaisman, F. et al. Spontaneous remission in thyroid cancer patients after biochemical incomplete response to initial therapy. Clin. Endocrinol. 77, 132–138 (2012).

    Article  CAS  Google Scholar 

  29. Verburg, F. A. et al. No survival difference after successful (131)I ablation between patients with initially low-risk and high-risk differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imag. 37, 276–283 (2010).

    Article  Google Scholar 

  30. Lamartina, L. et al. Surgery for neck recurrence of differentiated thyroid cancer: outcomes and risk factors. J. Clin. Endocrinol. Metab. 102, 1020–1031 (2017).

    PubMed  Google Scholar 

  31. World Health Organization. Classification of Tumours of Endocrine Organs. 4th edn (WHO, 2017).

  32. Nikiforov, Y. E. et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2, 1023–1029 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Parente, D. N. et al. Clinical safety of renaming encapsulated follicular variant of papillary thyroid carcinoma: Is NIFTP truly benign? World J. Surg. https://doi.org/10.1007/s00268-017-4182-5 (2017).

  34. Cho, U., Mete, O., Kim, M. H., Bae, J. S. & Jung, C. K. Molecular correlates and rate of lymph node metastasis of non-invasive follicular thyroid neoplasm with papillary-like nuclear features and invasive follicular variant papillary thyroid carcinoma: the impact of rigid criteria to distinguish non-invasive follicular thyroid neoplasm with papillary-like nuclear features. Mod. Pathol. 30, 810–825 (2017).

    Article  PubMed  CAS  Google Scholar 

  35. Grani, G., Lamartina, L., Durante, C., Filetti, S. & Cooper, D. S. Follicular thyroid cancer and Hürthle cell carcinoma: challenges in diagnosis, treatment, and clinical management. Lancet Diabetes Endocrinol. 6, 500–514 (2017).

    Article  PubMed  Google Scholar 

  36. Ito, Y. et al. Prognostic factors of minimally invasive follicular thyroid carcinoma: extensive vascular invasion significantly affects patient prognosis. Endocr. J. 60, 637–642 (2013).

    Article  PubMed  Google Scholar 

  37. Ganly, I. et al. Genomic dissection of Hurthle cell carcinoma reveals a unique class of thyroid malignancy. J. Clin. Endocrinol. Metab. 98, E962–972 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Volante, M. et al. Poorly differentiated carcinomas of the thyroid with trabecular, insular, and solid patterns: a clinicopathologic study of 183 patients. Cancer 100, 950–957 (2004).

    Article  PubMed  Google Scholar 

  39. Celano, M. et al. Targeting post-translational histone modifications for the treatment of non-medullary thyroid cancer. Mol. Cell Endocrinol. 469, 38–47 (2017).

    Article  PubMed  CAS  Google Scholar 

  40. Bisarro Dos Reis, M. et al. Prognostic classifier based on genome-wide DNA methylation profiling in well-differentiated thyroid tumors. J. Clin. Endocrinol. Metab. 102, 4089–4099 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Beltrami, C. M. et al. Integrated data analysis reveals potential drivers and pathways disrupted by DNA methylation in papillary thyroid carcinomas. Clin. Epigenet. 9, 45 (2017).

    Article  CAS  Google Scholar 

  42. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676–690 (2014).

    Article  CAS  Google Scholar 

  43. Huang, Y. et al. BRAF V600E mutation-assisted risk stratification of solitary intrathyroidal papillary thyroid cancer for precision treatment. J. Natl Cancer Inst. 110, 362–370 (2017).

    Article  Google Scholar 

  44. Tallini, G. et al. BRAF V600E and risk stratification of thyroid microcarcinoma: a multicenter pathological and clinical study. Mod. Pathol. 28, 1343–1359 (2015).

    Article  PubMed  CAS  Google Scholar 

  45. Elisei, R. et al. The BRAF(V600E) mutation is an independent, poor prognostic factor for the outcome of patients with low-risk intrathyroid papillary thyroid carcinoma: single-institution results from a large cohort study. J. Clin. Endocrinol. Metab. 97, 4390–4398 (2012).

    Article  PubMed  CAS  Google Scholar 

  46. Xing, M. et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J. Clin. Oncol. 33, 42–50 (2015).

    Article  PubMed  Google Scholar 

  47. Xing, M. et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 309, 1493–1501 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Shen, X. et al. Patient age-associated mortality risk is differentiated by BRAF V600E status in papillary thyroid cancer. J. Clin. Oncol. 36, 438–445 (2018).

    Article  PubMed  Google Scholar 

  49. Rosignolo, F. et al. MicroRNA-based molecular classification of papillary thyroid carcinoma. Int. J. Oncol. 50, 1767–1777 (2017).

    Article  PubMed  CAS  Google Scholar 

  50. Celano, M. et al. MicroRNAs as biomarkers in thyroid carcinoma. Int. J. Genom. 2017, 6496570 (2017).

    Google Scholar 

  51. Durante, C. et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J. Clin. Endocrinol. Metab. 92, 2840–2843 (2007).

    Article  PubMed  CAS  Google Scholar 

  52. Rosignolo, F. et al. Reduced expression of THRbeta in papillary thyroid carcinomas: relationship with BRAF mutation, aggressiveness and miR expression. J. Endocrinol. Invest. 38, 1283–1289 (2015).

    Article  PubMed  CAS  Google Scholar 

  53. Xing, M. et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J. Clin. Oncol. 32, 2718–2726 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Fukahori, M. et al. The associations between RAS mutations and clinical characteristics in follicular thyroid tumors: new insights from a single center and a large patient cohort. Thyroid 22, 683–689 (2012).

    Article  PubMed  CAS  Google Scholar 

  55. Jang, E. K. et al. NRAS codon 61 mutation is associated with distant metastasis in patients with follicular thyroid carcinoma. Thyroid 24, 1275–1281 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lacroix, L. et al. Follicular thyroid tumors with the PAX8-PPARγ1 rearrangement display characteristic genetic alterations. Am. J. Pathol. 167, 223–231 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Liu, Z. et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J. Clin. Endocrinol. Metab. 93, 3106–3116 (2008).

    Article  PubMed  CAS  Google Scholar 

  58. Liu, T. et al. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene 33, 4978–4984 (2014).

    Article  PubMed  CAS  Google Scholar 

  59. Volante, M. et al. RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J. Clin. Endocrinol. Metab. 94, 4735–4741 (2009).

    Article  PubMed  CAS  Google Scholar 

  60. Landa, I. et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Invest. 126, 1052–1066 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ibrahimpasic, T. et al. Genomic alterations in fatal forms of non-anaplastic thyroid cancer: identification of MED12 and RBM10 as novel thyroid cancer genes associated with tumor virulence. Clin. Cancer Res. 23, 5970–5980 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Ho, A. L. et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N. Engl. J. Med. 368, 623–632 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Rothenberg, S. M., McFadden, D. G., Palmer, E. L., Daniels, G. H. & Wirth, L. J. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin. Cancer Res. 21, 1028–1035 (2015).

    Article  PubMed  CAS  Google Scholar 

  64. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01534897 (2018).

  65. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01843062 (2018).

  66. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02393690 (2018).

  67. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02152995 (2018).

  68. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03244956 (2017).

  69. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00413322 (2015).

  70. Momesso, D. P. et al. Dynamic risk stratification in patients with differentiated thyroid cancer treated without radioactive iodine. J. Clin. Endocrinol. Metab. 101, 2692–2700 (2016).

    Article  PubMed  CAS  Google Scholar 

  71. Lamartina, L. & Cooper, D. S. Radioiodine remnant ablation in low-risk differentiated thyroid cancer: the “con” point of view. Endocrine 50, 67–71 (2015).

    Article  CAS  Google Scholar 

  72. Pacini, F. et al. Prediction of disease status by recombinant human TSH-stimulated serum Tg in the postsurgical follow-up of differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 86, 5686–5690 (2001).

    Article  PubMed  CAS  Google Scholar 

  73. Kloos, R. T. & Mazzaferri, E. L. A single recombinant human thyrotropin-stimulated serum thyroglobulin measurement predicts differentiated thyroid carcinoma metastases three to five years later. J. Clin. Endocrinol. Metab. 90, 5047–5057 (2005).

    Article  PubMed  CAS  Google Scholar 

  74. Castagna, M. G. et al. Limited value of repeat recombinant human thyrotropin (rhTSH)-stimulated thyroglobulin testing in differentiated thyroid carcinoma patients with previous negative rhTSH-stimulated thyroglobulin and undetectable basal serum thyroglobulin levels. J. Clin. Endocrinol. Metab. 93, 76–81 (2008).

    Article  PubMed  CAS  Google Scholar 

  75. Crocetti, U. et al. Predictive value of recombinant human TSH stimulation and neck ultrasonography in differentiated thyroid cancer patients. Thyroid 18, 1049–1053 (2008).

    Article  PubMed  CAS  Google Scholar 

  76. Schlumberger, M. et al. Comparison of seven serum thyroglobulin assays in the follow-up of papillary and follicular thyroid cancer patients. J. Clin. Endocrinol. Metab. 92, 2487–2495 (2007).

    Article  PubMed  CAS  Google Scholar 

  77. Chindris, A. M., Diehl, N. N., Crook, J. E., Fatourechi, V. & Smallridge, R. C. Undetectable sensitive serum thyroglobulin (<0.1 ng/ml) in 163 patients with follicular cell-derived thyroid cancer: results of rhTSH stimulation and neck ultrasonography and long-term biochemical and clinical follow-up. J. Clin. Endocrinol. Metab. 97, 2714–2723 (2012).

    Article  PubMed  CAS  Google Scholar 

  78. Spencer, C., Fatemi, S., Singer, P., Nicoloff, J. & Lopresti, J. Serum Basal thyroglobulin measured by a second-generation assay correlates with the recombinant human thyrotropin-stimulated thyroglobulin response in patients treated for differentiated thyroid cancer. Thyroid 20, 587–595 (2010).

    Article  PubMed  CAS  Google Scholar 

  79. Brassard, M. et al. Long-term follow-up of patients with papillary and follicular thyroid cancer: a prospective study on 715 patients. J. Clin. Endocrinol. Metab. 96, 1352–1359 (2011).

    Article  PubMed  CAS  Google Scholar 

  80. Malandrino, P. et al. Risk-adapted management of differentiated thyroid cancer assessed by a sensitive measurement of basal serum thyroglobulin. J. Clin. Endocrinol. Metab. 96, 1703–1709 (2011).

    Article  PubMed  CAS  Google Scholar 

  81. Netzel, B. C. et al. First steps toward harmonization of LC-MS/MS thyroglobulin assays. Clin. Chem. Vol. 62, 297–299 (2016).

    Article  PubMed  CAS  Google Scholar 

  82. Netzel, B. C. et al. Thyroglobulin (Tg) testing revisited: Tg assays, TgAb assays, and correlation of results with clinical outcomes. J. Clin. Endocrinol. Metab. 100, E1074–E1083 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Azmat, U., Porter, K., Senter, L., Ringel, M. D. & Nabhan, F. Thyroglobulin liquid chromatography-tandem mass spectrometry has a low sensitivity for detecting structural disease in patients with antithyroglobulin antibodies. Thyroid 27, 74–80 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Durante, C. et al. Clinical aggressiveness and long-term outcome in patients with papillary thyroid cancer and circulating anti-thyroglobulin autoantibodies. Thyroid 24, 1139–1145 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Rosario, P. W., Carvalho, M., Mourao, G. F. & Calsolari, M. R. Comparison of antithyroglobulin antibody concentrations before and after ablation with 131i as a predictor of structural disease in differentiated thyroid carcinoma patients with undetectable basal thyroglobulin and negative neck ultrasonography. Thyroid 26, 525–531 (2016).

    Article  PubMed  CAS  Google Scholar 

  86. Leboulleux, S. et al. Ultrasound criteria of malignancy for cervical lymph nodes in patients followed up for differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 92, 3590–3594 (2007).

    Article  PubMed  CAS  Google Scholar 

  87. Shin, J. H., Han, B. K., Ko, E. Y. & Kang, S. S. Sonographic findings in the surgical bed after thyroidectomy: comparison of recurrent tumors and nonrecurrent lesions. J Ultrasound Med. 26, 1359–1366 (2007).

    Article  PubMed  Google Scholar 

  88. Lamartina, L., Deandreis, D., Durante, C. & Filetti, S. Endocrine tumours: imaging in the follow-up of differentiated thyroid cancer: current evidence and future perspectives for a risk-adapted approach. Eur. J. Endocrinol. 175, R185–202 (2016).

    Article  PubMed  CAS  Google Scholar 

  89. Leenhardt, L. et al. 2013 European Thyroid Association guidelines for cervical ultrasound scan and ultrasound-guided techniques in the postoperative management of patients with thyroid cancer. Eur. Thyroid J. 2, 147–159 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Lamartina, L. et al. Risk stratification of neck lesions detected sonographically during the follow-up of differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 101, 3036–3044 (2016). The European Thyroid Association’s classification of sonographically detected neck abnormalities can help to identify patients with PTC who are eligible for a more relaxed follow-up.

    Article  PubMed  CAS  Google Scholar 

  91. Robenshtok, E. et al. Suspicious cervical lymph nodes detected after thyroidectomy for papillary thyroid cancer usually remain stable over years in properly selected patients. J. Clin. Endocrinol. Metab. 97, 2706–2713 (2012).

    Article  PubMed  CAS  Google Scholar 

  92. Rondeau, G., Fish, S., Hann, L. E., Fagin, J. A. & Tuttle, R. M. Ultrasonographically detected small thyroid bed nodules identified after total thyroidectomy for differentiated thyroid cancer seldom show clinically significant structural progression. Thyroid 21, 845–853 (2011).

    Article  PubMed  Google Scholar 

  93. Kamaya, A., Gross, M., Akatsu, H. & Jeffrey, R. B. Recurrence in the thyroidectomy bed: sonographic findings. AJR Am. J. Roentgenol. 196, 66–70 (2011).

    Article  PubMed  Google Scholar 

  94. Bishop, J. A., Owens, C. L., Shum, C. H. & Ali, S. Z. Thyroid bed fine-needle aspiration: experience at a large tertiary care center. Am. J. Clin. Pathol. 134, 335–339 (2010).

    Article  PubMed  Google Scholar 

  95. Choudhary, C., Wartofsky, L., Tefera, E. & Burman, K. D. Evaluation of thyroid bed nodules on ultrasonography after total thyroidectomy: risk for loco-regional recurrence of thyroid cancer. Eur. Thyroid J. 4, 106–114 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Grani, G. & Fumarola, A. Thyroglobulin in lymph node fine-needle aspiration washout: a systematic review and meta-analysis of diagnostic accuracy. J. Clin. Endocrinol. Metab. 99, 1970–1982 (2014).

    Article  PubMed  CAS  Google Scholar 

  97. Arturi, F. et al. Early diagnosis by genetic analysis of differentiated thyroid cancer metastases in small lymph nodes. J. Clin. Endocrinol. Metab. 82, 1638–1641 (1997).

    Article  PubMed  CAS  Google Scholar 

  98. Banerjee, M., Wiebel, J. L., Guo, C., Gay, B. & Haymart, M. R. Use of imaging tests after primary treatment of thyroid cancer in the United States: population based retrospective cohort study evaluating death and recurrence. BMJ 354, i3839 (2016). This study describes how an important rise in the use of imaging tests in DTC follow-up is not paralleled by an improvement in disease-specific survival.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Cailleux, A. F., Baudin, E., Travagli, J. P., Ricard, M. & Schlumberger, M. Is diagnostic iodine-131 scanning useful after total thyroid ablation for differentiated thyroid cancer? J. Clin. Endocrinol. Metab. 85, 175–178 (2000).

    Article  PubMed  CAS  Google Scholar 

  100. Pacini, F. et al. Diagnostic 131-iodine whole-body scan may be avoided in thyroid cancer patients who have undetectable stimulated serum Tg levels after initial treatment. J. Clin. Endocrinol. Metab. 87, 1499–1501 (2002).

    Article  PubMed  CAS  Google Scholar 

  101. Gonzalez Carvalho, J. M. et al. Evaluation of 131I scintigraphy and stimulated thyroglobulin levels in the follow up of patients with DTC: a retrospective analysis of 1420 patients. Eur. J. Nucl. Med. Mol. Imag. 44, 744–756 (2017).

    Article  CAS  Google Scholar 

  102. Pacini, F. et al. Outcome of differentiated thyroid cancer with detectable serum Tg and negative diagnostic (131)I whole body scan: comparison of patients treated with high (131)I activities versus untreated patients. J. Clin. Endocrinol. Metab. 86, 4092–4097 (2001).

    Article  PubMed  CAS  Google Scholar 

  103. Torlontano, M. et al. Comparative evaluation of recombinant human thyrotropin-stimulated thyroglobulin levels, 131I whole-body scintigraphy, and neck ultrasonography in the follow-up of patients with papillary thyroid microcarcinoma who have not undergone radioiodine therapy. J. Clin. Endocrinol. Metab. 91, 60–63 (2006).

    Article  PubMed  CAS  Google Scholar 

  104. Leboulleux, S. et al. Postradioiodine treatment whole-body scan in the era of 18-fluorodeoxyglucose positron emission tomography for differentiated thyroid carcinoma with elevated serum thyroglobulin levels. Thyroid 22, 832–838 (2012).

    Article  PubMed  CAS  Google Scholar 

  105. Mazzaferri, E. L. & Jhiang, S. M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med. 97, 418–428 (1994).

    Article  PubMed  CAS  Google Scholar 

  106. Torlontano, M. et al. Follow-up of low risk patients with papillary thyroid cancer: role of neck ultrasonography in detecting lymph node metastases. J. Clin. Endocrinol. Metab. 89, 3402–3407 (2004).

    Article  PubMed  CAS  Google Scholar 

  107. Jeon, M. J. et al. A follow-up strategy for patients with an excellent response to initial therapy for differentiated thyroid carcinoma: less is better. Thyroid 28, 187–192 (2018).

    Article  PubMed  CAS  Google Scholar 

  108. Ryoo, I. et al. Analysis of postoperative ultrasonography surveillance after total thyroidectomy in patients with papillary thyroid carcinoma: a multicenter study. Acta Radiol. 59, 196–203 (2017).

    Article  PubMed  Google Scholar 

  109. Yang, S. P., Bach, A. M., Tuttle, R. M. & Fish, S. A. Serial neck ultrasound is more likely to identify false-positive abnormalities than clinically significant disease in low-risk papillary thyroid cancer patients. Endocr. Pract. 21, 1372–1379 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Peiling Yang, S., Bach, A. M., Tuttle, R. M. & Fish, S. A. Frequent screening with serial neck ultrasound is more likely to identify false-positive abnormalities than clinically significant disease in the surveillance of intermediate risk papillary thyroid cancer patients without suspicious findings on follow-up ultrasound evaluation. J. Clin. Endocrinol. Metab. 100, 1561–1567 (2015).

    Article  PubMed  CAS  Google Scholar 

  111. Hovens, G. C. et al. Associations of serum thyrotropin concentrations with recurrence and death in differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 92, 2610–2615 (2007).

    Article  PubMed  CAS  Google Scholar 

  112. Xia, Q., Dong, S., Bian, P. D., Wang, J. & Li, C. J. Effects of endocrine therapy on the prognosis of elderly patients after surgery for papillary thyroid carcinoma. Eur Arch. Otorhinolaryngol. 273, 1037–1043 (2016).

    Article  PubMed  Google Scholar 

  113. Wang, L. Y. et al. Thyrotropin suppression increases the risk of osteoporosis without decreasing recurrence in ATA low- and intermediate-risk patients with differentiated thyroid carcinoma. Thyroid 25, 300–307 (2015).

    Article  PubMed  CAS  Google Scholar 

  114. Sugitani, I. & Fujimoto, Y. Does postoperative thyrotropin suppression therapy truly decrease recurrence in papillary thyroid carcinoma? A randomized controlled trial. J. Clin. Endocrinol. Metab. 95, 4576–4583 (2010). This is a randomized trial on TSH suppression versus normal TSH that demonstrates no difference in 5-year recurrence rates in patients with DTC.

    Article  PubMed  CAS  Google Scholar 

  115. Vaisman, F., Tala, H., Grewal, R. & Tuttle, R. M. In differentiated thyroid cancer, an incomplete structural response to therapy is associated with significantly worse clinical outcomes than only an incomplete thyroglobulin response. Thyroid 21, 1317–1322 (2011). This study describes how dynamic risk stratification allows for better prediction of a patient’s outcome.

    Article  PubMed  CAS  Google Scholar 

  116. Lamartina, L. et al. Papillary thyroid carcinomas with biochemical incomplete or indeterminate responses to initial treatment: repeat stimulated thyroglobulin assay to identify disease-free patients. Endocrine 54, 467–475 (2016).

    Article  PubMed  CAS  Google Scholar 

  117. Baudin, E. et al. Positive predictive value of serum thyroglobulin levels, measured during the first year of follow-up after thyroid hormone withdrawal, in thyroid cancer patients. J .Clin. Endocrinol. Metab. 88, 1107–1111 (2003).

    Article  PubMed  CAS  Google Scholar 

  118. Durante, C. et al. Long-term surveillance of papillary thyroid cancer patients who do not undergo postoperative radioiodine remnant ablation: is there a role for serum thyroglobulin measurement? J. Clin. Endocrinol. Metab. 97, 2748–2753 (2012). This is a retrospective study on the role of serial thyroglobulin determinations and thyroglobulin trend in the follow-up of DTC.

    Article  PubMed  CAS  Google Scholar 

  119. Miyauchi, A. et al. Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid 21, 707–716 (2011).

    Article  PubMed  Google Scholar 

  120. Rosignolo, F. et al. Identification of thyroid-associated serum microRNA profiles and their potential use in thyroid cancer follow-up. J. Endocr. Soc. 1, 3–13 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. Nascimento, C. et al. Postoperative fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography: an important imaging modality in patients with aggressive histology of differentiated thyroid cancer. Thyroid 25, 437–444 (2015).

    Article  PubMed  CAS  Google Scholar 

  122. Rosario, P. W., Mineiro Filho, A. F., Lacerda, R. X., dos Santos, D. A. & Calsolari, M. R. The value of diagnostic whole-body scanning and serum thyroglobulin in the presence of elevated serum thyrotropin during follow-up of anti-thyroglobulin antibody-positive patients with differentiated thyroid carcinoma who appeared to be free of disease after total thyroidectomy and radioactive iodine ablation. Thyroid 22, 113–116 (2012).

    Article  PubMed  CAS  Google Scholar 

  123. Meltzer, C. et al. Surgeon volume in thyroid surgery: surgical efficiency, outcomes, and utilization. Laryngoscope 126, 2630–2639 (2016).

    Article  PubMed  Google Scholar 

  124. Nascimento, C. et al. Ultrasensitive serum thyroglobulin measurement is useful for the follow-up of patients treated with total thyroidectomy without radioactive iodine ablation. Eur. J. Endocrinol. 169, 689–693 (2013).

    Article  PubMed  CAS  Google Scholar 

  125. Matsuzu, K. et al. Thyroid lobectomy for papillary thyroid cancer: long-term follow-up study of 1,088 cases. World J. Surg. 38, 68–79 (2014).

    Article  PubMed  Google Scholar 

  126. Antunes, C. M. & Taveira-Gomes, A. Lobectomy in follicular thyroid neoplasms’ treatment. Int. J. Surg. 11, 919–922 (2013).

    Article  PubMed  Google Scholar 

  127. Lytrivi, M. et al. Thyroid lobectomy is an effective option for unilateral benign nodular disease. Clin. Endocrinol. 85, 602–608 (2016).

    Article  CAS  Google Scholar 

  128. Johner, A. et al. Detection and management of hypothyroidism following thyroid lobectomy: evaluation of a clinical algorithm. Ann. Surg. Oncol. 18, 2548–2554 (2011).

    Article  PubMed  Google Scholar 

  129. Barczynski, M. et al. Five-year follow-up of a randomized clinical trial of unilateral thyroid lobectomy with or without postoperative levothyroxine treatment. World J. Surg. 34, 1232–1238, https://doi.org/10.1007/s00268-010-0439-y (2010).

    Article  PubMed  Google Scholar 

  130. Ruhlmann, M., Binse, I., Bockisch, A. & Rosenbaum-Krumme, S. J. Initial [18F]FDG PET/CT in high-risk DTC patients. A three-year follow-up. Nuklearmedizin 55, 99–103 (2016).

    Article  PubMed  Google Scholar 

  131. Kukulska, A. et al. The role of FDG-PET in localization of recurrent lesions of differentiated thyroid cancer (DTC) in patients with asymptomatic hyperthyroglobulinemia in a real clinical practice. Eur. J. Endocrinol. 175, 379–385 (2016).

    Article  PubMed  CAS  Google Scholar 

  132. Hanscheid, H., Lassmann, M., Buck, A. K., Reiners, C. & Verburg, F. A. The limit of detection in scintigraphic imaging with I-131 in patients with differentiated thyroid carcinoma. Phys. Med. Biol. 59, 2353–2368 (2014).

    Article  PubMed  CAS  Google Scholar 

  133. Sabra, M. M., Grewal, R. K., Tala, H., Larson, S. M. & Tuttle, R. M. Clinical outcomes following empiric radioiodine therapy in patients with structurally identifiable metastatic follicular cell-derived thyroid carcinoma with negative diagnostic but positive post-therapy 131I whole-body scans. Thyroid 22, 877–883 (2012).

    Article  PubMed  CAS  Google Scholar 

  134. Robbins, R. J. et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J. Clin. Endocrinol. Metab. 91, 498–505 (2006).

    Article  PubMed  CAS  Google Scholar 

  135. Males, L. et al. FDG+/RAI+ patients with distant metastases from differentiated thyroid cancer can benefit from radioactive iodine treatment. 40th meeting of the European Thyroid Association (2017).

  136. Terroir, M. et al. The intensity of 18FDG uptake does not predict tumor growth in patients with metastatic differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imag. 44, 638–646 (2017).

    Article  CAS  Google Scholar 

  137. Pryma, D. A. et al. Diagnostic accuracy and prognostic value of 18F-FDG PET in Hurthle cell thyroid cancer patients. J. Nucl. Med. 47, 1260–1266 (2006).

    PubMed  Google Scholar 

  138. Durante, C. et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J. Clin. Endocrinol. Metab. 91, 2892–2899 (2006).

    Article  PubMed  CAS  Google Scholar 

  139. Ibrahimpasic, T. et al. Undetectable thyroglobulin levels in poorly differentiated thyroid carcinoma patients free of macroscopic disease after initial treatment: are they useful? Ann. Surg. Oncol. 22, 4193–4197 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Boltz, M. M., Hollenbeak, C. S., Schaefer, E., Goldenberg, D. & Saunders, B. D. Attributable costs of differentiated thyroid cancer in the elderly Medicare population. Surgery 154, 1363–1369; discussion 1369–1370 (2013).

    Article  PubMed  Google Scholar 

  141. Aschebrook-Kilfoy, B. et al. The clinical and economic burden of a sustained increase in thyroid cancer incidence. Cancer Epidemiol. Biomarkers Prev. 22, 1252–1259 (2013).

    Article  PubMed  Google Scholar 

  142. Berger, A. et al. Healthcare (HC) utilization and costs in patients (pts) with newly diagnosed metastatic thyroid cancer (mTC). J. Clin. Oncol. 25, 17082–17082 (2007).

    Google Scholar 

  143. Lang, B. H., Wong, C. K. & Chan, C. T. Initial attributable cost and economic burden of clinically-relevant differentiated thyroid cancer: a health care service provider perspective. Eur. J. Surg. Oncol. 41, 758–765 (2015).

    Article  PubMed  Google Scholar 

  144. Lubitz, C. C. et al. Annual financial impact of well-differentiated thyroid cancer care in the United States. Cancer 120, 1345–1352 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Borget, I. et al. Quality of life and cost-effectiveness assessment of radioiodine ablation strategies in patients with thyroid cancer: results from the randomized phase III ESTIMABL trial. J. Clin. Oncol. 33, 2885–2892 (2015).

    Article  PubMed  CAS  Google Scholar 

  146. Wu, J. X., Beni, C. E., Zanocco, K. A., Sturgeon, C. & Yeh, M. W. Cost-effectiveness of long-term every three-year versus annual postoperative surveillance for low-risk papillary thyroid cancer. Thyroid 25, 797–803 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

L.L. and G.G. contributed to this paper as PhD students in the Biotechnology and Clinical Medicine programme of the University of Rome “Sapienza”. M.S. contributed to this paper as a recipient of the “Visiting professor for research activities 2016” grant (ID number C26V16RBXB) from the University of Rome “Sapienza”. The authors thank M. E. Kent for providing editorial support.

Reviewer information

Nature Reviews Endocrinology thanks S. Roman, A. Shaha, F. Verburg and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

M.S., S.F., I.B. and C.D. provided substantial contributions to discussion of the content and reviewed and/or edited the manuscript before submission. L.L., I.B. and G.G. researched the data for the article and wrote the article.

Corresponding author

Correspondence to Martin Schlumberger.

Ethics declarations

Competing interests

I.B., C.D., G.G., L.L. and S.F. declare no competing interests. M.S. has received research grants and honoraria from Sanofi-Genzyme.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

National Cancer Institute: https://seer.cancer.gov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamartina, L., Grani, G., Durante, C. et al. Follow-up of differentiated thyroid cancer – what should (and what should not) be done. Nat Rev Endocrinol 14, 538–551 (2018). https://doi.org/10.1038/s41574-018-0068-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-018-0068-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing