Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fracture prediction, imaging and screening in osteoporosis

Abstract

Osteoporosis is associated with increased fragility of bone and a subsequent increased risk of fracture. The diagnosis of osteoporosis is intimately linked with the imaging and quantification of bone and BMD. Scanning modalities, such as dual-energy X-ray absorptiometry or quantitative CT, have been developed and honed over the past half century to provide measures of BMD and bone microarchitecture for the purposes of clinical practice and research. Combined with fracture prediction tools such as Fracture Risk Assessment Tool (FRAX) (which use a combination of clinical risk factors for fracture to provide a measure of risk), these elements have led to a paradigm shift in the ability to diagnose osteoporosis and predict individuals who are at risk of fragility fracture. Despite these developments, a treatment gap exists between individuals who are at risk of osteoporotic fracture and those who are receiving therapy. In this Review, we summarize the epidemiology of osteoporosis, the history of scanning modalities, fracture prediction tools and future directions, including the most recent developments in prediction of fractures.

Key points

  • The WHO defines osteoporosis as a measurement of BMD that is at least 2.5 standard deviations less than the mean BMD for a 30-year-old man or woman.

  • Dual-energy X-ray absorptiometry provides a measure of BMD that can be used to diagnose osteoporosis.

  • Central and peripheral quantitative CT can be used to provide measures of bone microarchitecture within a research setting.

  • BMD, combined with clinical risk scores, including Fracture Risk Assessment Tool (FRAX), can be used to predict which individuals are at high risk of fracture.

  • A gap exists between individuals who are at risk of fracture and those who are receiving treatment and requires closing as a matter of paramount importance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Secular changes in hip fracture worldwide.
Fig. 2: The pitfalls of a fixed Fracture Risk Assessment Tool threshold for intervention.
Fig. 3: Participant flow for the SCOOP study.
Fig. 4: Cost-effectiveness acceptability curves from the SCOOP study.
Fig. 5: The effect of screening on hip fracture rates in the SCOOP study.

Similar content being viewed by others

References

  1. Hernlund, E. et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch. Osteoporos. 8, 136 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gullberg, B., Johnell, O. & Kanis, J. A. World-wide projections for hip fracture. Osteoporos. Int. 7, 407–413 (1997).

    CAS  PubMed  Google Scholar 

  3. Cooper, C., Campion, G. & Melton, L. J. 3rd Hip fractures in the elderly: a world-wide projection. Osteoporos. Int. 2, 285–289 (1992).

    CAS  PubMed  Google Scholar 

  4. Chrischilles, E. A., Butler, C. D., Davis, C. S. & Wallace, R. B. A model of lifetime osteoporosis impact. Arch. Intern. Med. 151, 2026–2032 (1991).

    CAS  PubMed  Google Scholar 

  5. Royal College of Physicians. Osteoporosis: Clinical Guidelines for the Prevention and Treatment (Royal College of Physicians, London, 1999).

  6. Eddy, D. M. et al. Osteoporosis: review of the evidence for prevention, diagnosis, and treatment and cost-effectiveness analysis. Osteoporos. Int. 8, I–S82 (1998).

    Google Scholar 

  7. Carmona, R. H. in Bone Health and Osteoporosis: A Report of the Surgeon General (University Press of the Pacific, 2004).

  8. Sambrook, P. & Cooper, C. Osteoporosis. Lancet 367, 2010–2018 (2006).

    CAS  PubMed  Google Scholar 

  9. van der Velde, R. Y. et al. Secular trends in fracture incidence in the UK between 1990 and 2012. Osteoporos. Int. 27, 3197–3206 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. Cooper, C. et al. Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos. Int. 22, 1277–1288 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kanis, J. A. et al. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos. Int. 23, 2239–2256 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Curtis, E. M. et al. Epidemiology of fractures in the United Kingdom 1988-2012: variation with age, sex, geography, ethnicity and socioeconomic status. Bone 87, 19–26 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Cummings, S. R. & Melton, L. J. Epidemiology and outcomes of osteoporotic fractures. Lancet 359, 1761–1767 (2002).

    PubMed  Google Scholar 

  14. Bliuc, D., Alarkawi, D., Nguyen, T. V., Eisman, J. A. & Center, J. R. Risk of subsequent fractures and mortality in elderly women and men with fragility fractures with and without osteoporotic bone density: the Dubbo Osteoporosis Epidemiology Study. J. Bone Miner. Res. 30, 637–646 (2015).

    PubMed  Google Scholar 

  15. Burge, R. et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 22, 465–475 (2007).

    PubMed  Google Scholar 

  16. Johnell, O. & Kanis, J. A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 17, 1726–1733 (2006).

    CAS  PubMed  Google Scholar 

  17. Kanis, J. A. et al. SCOPE: a scorecard for osteoporosis in Europe. Arch. Osteoporos. 8, 144 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chapuy, M. C. et al. Vitamin D3 and calcium to prevent hip fractures in elderly women. N. Engl. J. Med. 327, 1637–1642 (1992).

    CAS  PubMed  Google Scholar 

  19. Dawson-Hughes, B., Harris, S. S., Krall, E. A. & Dallal, G. E. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N. Engl. J. Med. 337, 670–676 (1997).

    CAS  PubMed  Google Scholar 

  20. McClung, M. R. et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N. Engl. J. Med. 344, 333–340 (2001).

    CAS  PubMed  Google Scholar 

  21. Roux, C. et al. Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J. Bone Miner. Res. 21, 536–542 (2006).

    CAS  PubMed  Google Scholar 

  22. Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002).

    CAS  PubMed  Google Scholar 

  23. Hodsman, A. B., Hanley, D. A. & Josse, R. Do bisphosphonates reduce the risk of osteoporotic fractures? An evaluation of the evidence to date. CMAJ 166, 1426–1430 (2002).

    PubMed  PubMed Central  Google Scholar 

  24. Bone, H. G. et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 5, 513–523 (2017). This study reports that denosumab is safe and effective for use after 10 years follow-up.

    CAS  PubMed  Google Scholar 

  25. Leder, B. Z. et al. Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study): extension of a randomised controlled trial. Lancet 386, 1147–1155 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kendler, D. L. et al. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 391, 230–240 (2018).

    CAS  PubMed  Google Scholar 

  27. Eastell, R. et al. Bone turnover markers to explain changes in lumbar spine BMD with abaloparatide and teriparatide: results from ACTIVE. Osteoporos. Int. 30, 667–673 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Miller, P. D. et al. Effect of abaloparatide versus placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316, 722–733 (2016).

    CAS  PubMed  Google Scholar 

  29. Elliot-Gibson, V., Bogoch, E. R., Jamal, S. A. & Beaton, D. E. Practice patterns in the diagnosis and treatment of osteoporosis after a fragility fracture: a systematic review. Osteoporos. Int. 15, 767–778 (2004).

    CAS  PubMed  Google Scholar 

  30. Harvey, N. C. et al. Mind the (treatment) gap: a global perspective on current and future strategies for prevention of fragility fractures. Osteoporos. Int. 28, 1507–1529 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kanis, J. A., Svedbom, A., Harvey, N. & McCloskey, E. V. The osteoporosis treatment gap. J. Bone Miner. Res. 29, 1926–1928 (2014).

    PubMed  Google Scholar 

  32. Giangregorio, L., Papaioannou, A., Cranney, A., Zytaruk, N. & Adachi, J. D. Fragility fractures and the osteoporosis care gap: an international phenomenon. Semin. Arthritis Rheum. 35, 293–305 (2006).

    CAS  PubMed  Google Scholar 

  33. Curtis, E. M., Moon, R. J., Harvey, N. C. & Cooper, C. The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone 104, 29–38 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Kanis, J. A. et al. Worldwide uptake of FRAX. Arch. Osteoporos. 9, 166 (2014). This study reports the use of the FRAX prediction tool across the globe.

    CAS  PubMed  Google Scholar 

  35. Solomon, D. H. et al. Osteoporosis medication use after hip fracture in U.S. patients between 2002 and 2011. J. Bone Miner. Res. 29, 1929–1937 (2014).

    PubMed  Google Scholar 

  36. van der Velde, R. Y. et al. Trends in oral anti-osteoporosis drug prescription in the United Kingdom between 1990 and 2012: variation by age, sex, geographic location and ethnicity. Bone 94, 50–55 (2017).

    PubMed  Google Scholar 

  37. Adler, R. A. et al. Managing osteoporosis in patients on long-term bisphosphonate treatment: report of a Task Force of the American Society for Bone and Mineral Research. J. Bone Miner. Res. 31, 16–35 (2016).

    CAS  PubMed  Google Scholar 

  38. Abrahamsen, B., Eiken, P., Prieto-Alhambra, D. & Eastell, R. Risk of hip, subtrochanteric, and femoral shaft fractures among mid and long term users of alendronate: nationwide cohort and nested case-control study. BMJ 353, i3365 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. LeBlanc, E. S. et al. Evaluating atypical features of femur fractures: how change in radiological criteria influenced incidence and demography of atypical femur fractures in a community setting. J. Bone Miner. Res. 32, 2304–2314 (2017).

    PubMed  Google Scholar 

  40. Kanis, J. A. & Gluer, C. C. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos. Int. 11, 192–202 (2000).

    CAS  PubMed  Google Scholar 

  41. Kanis, J. A. et al. Standardising the descriptive epidemiology of osteoporosis: recommendations from the Epidemiology and Quality of Life Working Group of IOF. Osteoporos. Int. 24, 2763–2764 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ. Tech. Rep. Ser. 843, 1–129 (1994).

    Google Scholar 

  43. Smith, J. & Shoukri, K. Diagnosis of osteoporosis. Clin. Cornerstone 2, 22–33 (2000).

    CAS  PubMed  Google Scholar 

  44. Schuit, S. C. et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34, 195–202 (2004).

    CAS  PubMed  Google Scholar 

  45. Wainwright, S. A. et al. Hip fracture in women without osteoporosis. J. Clin. Endocrinol. Metab. 90, 2787–2793 (2005).

    CAS  PubMed  Google Scholar 

  46. Kanis, J. A. Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359, 1929–1936 (2002).

    PubMed  Google Scholar 

  47. Kanis, J. A., Cooper, C., Rizzoli, R. & Reginster, J. Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 30, 3–44 (2019). This is the most up-to-date guideline for the management of osteoporosis in postmenopausal women.

    CAS  PubMed  Google Scholar 

  48. Mazess, R. B., Peppler, W. W., Harrison, J. E. & McNeill, K. G. Total body bone mineral and lean body mass by dual-photon absorptiometry. III. Comparison with trunk calcium by neutron activation analysis. Calcif. Tissue Int. 33, 365–368 (1981).

    CAS  PubMed  Google Scholar 

  49. Crabtree, N. J. et al. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. J. Clin. Densitom. 17, 225–242 (2014).

    PubMed  Google Scholar 

  50. Lotz, J. C., Cheal, E. J. & Hayes, W. C. Fracture prediction for the proximal femur using finite element models: part I — linear analysis. J. Biomech. Eng. 113, 353–360 (1991).

    CAS  PubMed  Google Scholar 

  51. Nielson, C. M. et al. BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J. Bone Miner. Res. 26, 496–502 (2011).

    PubMed  Google Scholar 

  52. Shepherd, J. A., Schousboe, J. T., Broy, S. B., Engelke, K. & Leslie, W. D. Executive summary of the 2015 ISCD Position Development Conference on advanced measures from DXA and QCT: fracture prediction beyond BMD. J. Clin. Densitom. 18, 274–286 (2015).

    PubMed  Google Scholar 

  53. Beaudart, C. et al. Sarcopenia in daily practice: assessment and management. BMC Geriatr. 16, 170 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. International Atomic Energy Agency. Dual Energy X Ray Absorptiometry for Bone Mineral Density and Body Composition Assessment (International Atomic Energy Agency, Vienna, 2011).

  55. Rauch, F. & Schoenau, E. Changes in bone density during childhood and adolescence: an approach based on bone’s biological organization. J. Bone Miner. Res. 16, 597–604 (2001).

    CAS  PubMed  Google Scholar 

  56. Radspieler, H., Dambacher, M. A., Kissling, R. & Neff, M. Is the amount of trabecular bone-loss dependent on bone mineral density? A study performed by three centres of osteoporosis using high resolution peripheral quantitative computed tomography. Eur. J. Med. Res. 5, 32–39 (2000).

    CAS  PubMed  Google Scholar 

  57. Fewtrell, M. S., Gordon, I., Biassoni, L. & Cole, T. J. Dual X-ray absorptiometry (DXA) of the lumbar spine in a clinical paediatric setting: does the method of size-adjustment matter? Bone 37, 413–419 (2005).

    CAS  PubMed  Google Scholar 

  58. Carter, D. R., Bouxsein, M. L. & Marcus, R. New approaches for interpreting projected bone densitometry data. J. Bone Miner. Res. 7, 137–145 (1992).

    CAS  PubMed  Google Scholar 

  59. Kroger, H., Kotaniemi, A., Vainio, P. & Alhava, E. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone Miner. 17, 75–85 (1992).

    CAS  PubMed  Google Scholar 

  60. Crabtree, N. J. et al. Amalgamated reference data for size-adjusted bone densitometry measurements in 3598 children and young adults — the ALPHABET study. J. Bone Miner. Res. 32, 172–180 (2017).

    PubMed  Google Scholar 

  61. Adams, J. E. Advances in bone imaging for osteoporosis. Nat. Rev. Endocrinol. 9, 28–42 (2013).

    CAS  PubMed  Google Scholar 

  62. Silva, B. C. et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J. Bone Miner. Res. 29, 518–530 (2014).

    PubMed  Google Scholar 

  63. Dalle Carbonare, L. & Giannini, S. Bone microarchitecture as an important determinant of bone strength. J. Endocrinol. Invest. 27, 99–105 (2004).

    CAS  PubMed  Google Scholar 

  64. Hans, D., Goertzen, A. L., Krieg, M. A. & Leslie, W. D. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J. Bone Miner. Res. 26, 2762–2769 (2011). This paper demonstrates that TBS is a predictor of fracture independent of BMD.

    PubMed  Google Scholar 

  65. Winzenrieth, R., Michelet, F. & Hans, D. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise. J. Clin. Densitom. 16, 287–296 (2013).

    PubMed  Google Scholar 

  66. Harvey, N. C. et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 78, 216–224 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Simonelli, C. et al. Creation of an age-adjusted, dual-energy x-ray absorptiometry-derived trabecular bone score curve for the lumbar spine in non-Hispanic US White women. J. Clin. Densitom. 17, 314–319 (2014).

    PubMed  Google Scholar 

  68. Leslie, W. D. et al. Lumbar spine texture enhances 10-year fracture probability assessment. Osteoporos. Int. 25, 2271–2277 (2014).

    CAS  PubMed  Google Scholar 

  69. Leslie, W. D. et al. Spine bone texture assessed by trabecular bone score (TBS) predicts osteoporotic fractures in men: the Manitoba Bone Density Program. Bone 67, 10–14 (2014).

    CAS  PubMed  Google Scholar 

  70. McCloskey, E. V. et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J. Bone Miner. Res. 31, 940–948 (2016). This is a meta-analysis that details the potential adjustments of FRAX for TBS.

    PubMed  Google Scholar 

  71. Popp, A. W. et al. Effects of zoledronate versus placebo on spine bone mineral density and microarchitecture assessed by the trabecular bone score in postmenopausal women with osteoporosis: a three-year study. J. Bone Miner. Res. 28, 449–454 (2013).

    CAS  PubMed  Google Scholar 

  72. Krieg, M. A., Aubry-Rozier, B., Hans, D. & Leslie, W. D. Effects of anti-resorptive agents on trabecular bone score (TBS) in older women. Osteoporos. Int. 24, 1073–1078 (2013).

    CAS  PubMed  Google Scholar 

  73. Padlina, I. et al. The lumbar spine age-related degenerative disease influences the BMD not the TBS: the Osteolaus cohort. Osteoporos. Int. 28, 909–915 (2017).

    CAS  PubMed  Google Scholar 

  74. Mazzetti, G. et al. Densitometer-Specific Differences in the Correlation Between Body Mass Index and Lumbar Spine Trabecular Bone Score. J. Clin. Densitom. 20, 233–238 (2017).

    PubMed  Google Scholar 

  75. Ward, K. A., Mughal, Z. & Adams, J. E. in Bone Densitometry in Growing Patients Ch. 2 (ed. Sawyer, A. J.) (Humana Press, 2007).

  76. Samelson, E. J. et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol. 7, 34–43 (2019).

    PubMed  Google Scholar 

  77. Isherwood, I., Rutherford, R. A., Pullan, B. R. & Adams, P. H. Bone-mineral estimation by computer-assisted transverse axial tomography. Lancet 2, 712–715 (1976).

    CAS  PubMed  Google Scholar 

  78. Guglielmi, G. et al. Quantitative computed tomography at the axial and peripheral skeleton. Eur. Radiol. 7, 32–42 (1997).

    CAS  PubMed  Google Scholar 

  79. Engelke, K. Quantitative computed tomography-current status and new developments. J. Clin. Densitom. 20, 309–321 (2017).

    PubMed  Google Scholar 

  80. Link, T. M. & Lang, T. F. Axial QCT: clinical applications and new developments. J. Clin. Densitom. 17, 438–448 (2014).

    PubMed  Google Scholar 

  81. Sfeir, J. G. et al. Evaluation of cross-sectional and longitudinal changes in volumetric bone mineral density in postmenopausal women using single- versus dual-energy quantitative computed tomography. Bone 112, 145–152 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Ruegsegger, P., Durand, E. P. & Dambacher, M. A. Differential effects of aging and disease on trabecular and compact bone density of the radius. Bone 12, 99–105 (1991).

    CAS  PubMed  Google Scholar 

  83. Griffith, J. F. & Genant, H. K. Bone mass and architecture determination: state of the art. Best Pract. Res. Clin. Endocrinol. Metab. 22, 737–764 (2008).

    PubMed  Google Scholar 

  84. Frost, H. M. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 2, 73–85 (1987).

    CAS  PubMed  Google Scholar 

  85. Krug, R., Burghardt, A. J., Majumdar, S. & Link, T. M. High-resolution imaging techniques for the assessment of osteoporosis. Radiol. Clin. North Am. 48, 601–621 (2010).

    PubMed  PubMed Central  Google Scholar 

  86. Burghardt, A. J., Kazakia, G. J., Ramachandran, S., Link, T. M. & Majumdar, S. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J. Bone Miner. Res. 25, 983–993 (2010).

    PubMed  Google Scholar 

  87. Liu, X. S. et al. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J. Bone Miner. Res. 25, 746–756 (2010).

    CAS  PubMed  Google Scholar 

  88. Gong, B., Mandair, G. S., Wehrli, F. W. & Morris, M. D. Novel assessment tools for osteoporosis diagnosis and treatment. Curr. Osteoporos. Rep. 12, 357–365 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Chang, G. et al. MRI assessment of bone structure and microarchitecture. J. Magn. Reson. Imaging 46, 323–337 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. van Staa, T. P. et al. A simple clinical score for estimating the long-term risk of fracture in post-menopausal women. QJM 99, 673–682 (2006).

    PubMed  Google Scholar 

  91. Kanis, J. A. et al. Case finding for the management of osteoporosis with FRAX — assessment and intervention thresholds for the UK. Osteoporos. Int. 19, 1395–1408 (2008).

    CAS  PubMed  Google Scholar 

  92. Kanis, J. A., Johnell, O., Oden, A., Johansson, H. & McCloskey, E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 19, 385–397 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kanis, J. A. et al. A systematic review of intervention thresholds based on FRAX: A report prepared for the National Osteoporosis Guideline Group and the International Osteoporosis Foundation. Arch. Osteoporos. 11, 25 (2016). This is a systematic review of global osteoporosis guidelines and the intervention thresholds used.

    PubMed  PubMed Central  Google Scholar 

  94. Leslie, W. D. et al. Comparison of methods for improving fracture risk assessment in diabetes: the Manitoba BMD Registry. J. Bone Miner. Res. 33, 1923–1930 (2018).

    PubMed  Google Scholar 

  95. Leslie, W. D. et al. Spine-hip discordance and fracture risk assessment: a physician-friendly FRAX enhancement. Osteoporos. Int. 22, 839–847 (2011).

    CAS  PubMed  Google Scholar 

  96. Hippisley-Cox, J. & Coupland, C. Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ 339, b4229 (2009).

    PubMed  PubMed Central  Google Scholar 

  97. Nguyen, N. D., Frost, S. A., Center, J. R., Eisman, J. A. & Nguyen, T. V. Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos. Int. 19, 1431–1444 (2008). This paper presents a description of the Garvan tool.

    CAS  PubMed  Google Scholar 

  98. Kanis, J. A., Johansson, H., Harvey, N. C. & McCloskey, E. V. A brief history of FRAX. Arch. Osteoporos. 13, 118 (2018).

    PubMed  PubMed Central  Google Scholar 

  99. Compston, J. et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch. Osteoporos. 12, 43 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. McCloskey, E. V., Johansson, H., Harvey, N. C., Compston, J. & Kanis, J. A. Access to fracture risk assessment by FRAX and linked National Osteoporosis Guideline Group (NOGG) guidance in the UK — an analysis of anonymous website activity. Osteoporos. Int. 28, 71–76 (2017).

    CAS  PubMed  Google Scholar 

  101. Cosman, F. et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos. Int. 25, 2359–2381 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Grossman, J. M. et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res. 62, 1515–1526 (2010).

    Google Scholar 

  103. Kanis, J. A. et al. SIGN guidelines for Scotland: BMD versus FRAX versus QFracture. Calcif. Tissue Int. 98, 417–425 (2016). This article presents a comparison of the available fracture prediction tools.

    CAS  PubMed  Google Scholar 

  104. Kanis, J. A. WHO Scientific Group Assessment of Osteoporosis at the Primary Health Care Level: Summary Meeting Report (WHO, 2007).

  105. Barr, R. J., Stewart, A., Torgerson, D. J. & Reid, D. M. Population screening for osteoporosis risk: a randomised control trial of medication use and fracture risk. Osteoporos. Int. 21, 561–568 (2010).

    CAS  PubMed  Google Scholar 

  106. Clark, E. M. et al. Randomized controlled trial of a primary care-based screening program to identify older women with prevalent osteoporotic vertebral fractures: Cohort for Skeletal Health in Bristol and Avon (COSHIBA). J. Bone Miner. Res. 27, 664–671 (2012).

    PubMed  Google Scholar 

  107. Shepstone, L. et al. Screening in the community to reduce fractures in older women (SCOOP): a randomised controlled trial. Lancet 391, 741–747 (2018).

    PubMed  Google Scholar 

  108. Emmett, C. L. et al. Acceptability of screening to prevent osteoporotic fractures: a qualitative study with older women. Fam. Pract. 29, 235–242 (2012).

    PubMed  Google Scholar 

  109. Si, L., Winzenberg, T. M. & Palmer, A. J. A systematic review of models used in cost-effectiveness analyses of preventing osteoporotic fractures. Osteoporos. Int. 25, 51–60 (2014).

    CAS  PubMed  Google Scholar 

  110. Hiligsmann, M. et al. A systematic review of cost-effectiveness analyses of drugs for postmenopausal osteoporosis. Pharmacoeconomics 33, 205–224 (2015).

    PubMed  Google Scholar 

  111. Brooks, R. EuroQol: the current state of play. Health Policy 37, 53–72 (1996).

    CAS  PubMed  Google Scholar 

  112. NHS Digital. HRG4+2018/19 reference costs grouper. NHS Digital https://digital.nhs.uk/services/national-casemix-office/downloads-groupers-and-tools/costing---hrg4-2018-19-reference-costs-grouper (updated 29 Mar 2019).

  113. Turner, D. A. et al. The cost-effectiveness of screening in the community to reduce osteoporotic fractures in older women in the UK: economic evaluation of the SCOOP study. J. Bone Miner. Res. 33, 845–851 (2018).

    PubMed  Google Scholar 

  114. McCloskey, E. et al. Management of patients with high baseline hip fracture risk by FRAX reduces hip fractures-a post hoc analysis of the SCOOP study. J. Bone Miner. Res. 33, 1020–1026 (2018).

    CAS  PubMed  Google Scholar 

  115. Arnold, M. et al. Microindentation — a tool for measuring cortical bone stiffness? A systematic review. Bone Joint Res. 6, 542–549 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Malgo, F., Hamdy, N. A., Papapoulos, S. E. & Appelman-Dijkstra, N. M. Bone material strength as measured by microindentation in vivo is decreased in patients with fragility fractures independently of bone mineral density. J. Clin. Endocrinol. Metab. 100, 2039–2045 (2015).

    CAS  PubMed  Google Scholar 

  117. Malgo, F., Hamdy, N. A. T., Papapoulos, S. E. & Appelman-Dijkstra, N. M. Bone material strength index as measured by impact microindentation is low in patients with fractures irrespective of fracture site. Osteoporos. Int. 28, 2433–2437 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rozental, T. D. et al. Bone material strength index as measured by impact microindentation in postmenopausal women with distal radius and hip fractures. J. Bone Miner. Res. 33, 621–626 (2018).

    PubMed  Google Scholar 

  119. Diez-Perez, A. et al. Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J. Bone Miner. Res. 25, 1877–1885 (2010).

    PubMed  PubMed Central  Google Scholar 

  120. Guerri-Fernandez, R. C. et al. Microindentation for in vivo measurement of bone tissue material properties in atypical femoral fracture patients and controls. J. Bone Miner. Res. 28, 162–168 (2013).

    CAS  PubMed  Google Scholar 

  121. Rudang, R. et al. Bone material strength is associated with areal BMD but not with prevalent fractures in older women. Osteoporos. Int. 27, 1585–1592 (2016).

    CAS  PubMed  Google Scholar 

  122. Rufus-Membere, P., Holloway-Kew, K. L., Diez-Perez, A., Kotowicz, M. A. & Pasco, J. A. Feasibility and tolerability of bone impact microindentation testing: a cross-sectional, population-based study in Australia. BMJ Open 8, e023959 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Coutts, L. V. et al. Local variation in femoral neck cortical bone: in vitro measured bone mineral density, geometry and mechanical properties. J. Clin. Densitom. 20, 205–215 (2017).

    PubMed  Google Scholar 

  124. Vasikaran, S. et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin. Chem. Lab. Med. 49, 1271–1274 (2011).

    CAS  PubMed  Google Scholar 

  125. Vasikaran, S. et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos. Int. 22, 391–420 (2011).

    CAS  PubMed  Google Scholar 

  126. van Daele, P. L. et al. Case-control analysis of bone resorption markers, disability, and hip fracture risk: the Rotterdam study. BMJ 312, 482–483 (1996).

    PubMed  PubMed Central  Google Scholar 

  127. Garnero, P., Sornay-Rendu, E., Chapuy, M. C. & Delmas, P. D. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J. Bone Miner. Res. 11, 337–349 (1996).

    CAS  PubMed  Google Scholar 

  128. Bouxsein, M. L. & Delmas, P. D. Considerations for development of surrogate endpoints for antifracture efficacy of new treatments in osteoporosis: a perspective. J. Bone Miner. Res. 23, 1155–1167 (2008).

    PubMed  PubMed Central  Google Scholar 

  129. Wilson, J. M. Principles of screening for disease. Proc. R. Soc. Med. 64, 1255–1256 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Shepstone, L. et al. A pragmatic randomised controlled trial of the effectiveness and cost-effectiveness of screening older women for the prevention of fractures: rationale, design and methods for the SCOOP study. Osteoporos. Int. 23, 2507–2515 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Medical Research Council (UK), the National Institute for Health Research, the Dunhill Medical Trust, the Wellcome Trust, Arthritis Research UK, the National Osteoporosis Society (UK) and the International Osteoporosis Foundation.

Reviewer information

Nature Reviews Endocrinology thanks K. Brixen, S. Khosla, H. Kröger and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussions of the content and writing the article. C.C., N.R.F., E.M.C., K.A.W., N.C.H. and E.M.D. contributed to the review and editing of the manuscript.

Corresponding author

Correspondence to Cyrus Cooper.

Ethics declarations

Competing interests

C.C. has received lecture fees and honoraria from Amgen, Danone, Eli Lilly, GlaxoSmithKline, Medtronic, Merck, Nestlé, Novartis, Pfizer, Roche, Servier, Shire, Takeda and UCB outside of the submitted work. N.C.H. has received consultancy and lecture fees and honoraria from Alliance for Better Bone Health, Amgen, Consilient Healthcare, Eli Lilly, Internis Pharma, MSD, Radius Health, Servier, Shire and UCB. E.M.C. has received lecture fees and travel support from Eli Lilly, Pfizer and UCB outside of the submitted work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related Links

FRAX: https://www.sheffield.ac.uk/FRAX/

Garvan fracture prediction tool: https://www.garvan.org.au/promotions/bone-fracture-risk/calculator/

QFracture: https://www.qfracture.org/

Glossary

Major osteoporotic fractures

Fractures attributable to osteoporosis including hip, forearm, humerus or clinically presenting vertebral fractures.

Denosumab

A fully humanized monoclonal antibody that binds to the receptor activator of RANK ligand, thus blocking the action of RANK ligand. It is delivered via subcutaneous injection as an anti-resorptive agent for the treatment of osteoporosis.

Thoracic kyphosis

An S-shaped deformity of the spine that can be precipitated by osteoporotic vertebral fractures.

Periosteal envelope

The membrane of connective tissue that surrounds bone. It has two layers, an outer fibrous layer and an inner layer, which plays a crucial role in osteogenesis.

Bone mineral apparent density

An estimated volumetric bone density. Volume is calculated from the dual-energy X-ray absorptiometry (DXA)-assessed bone area by assuming the vertebrae are either a cube or a cylinder. It is a method of reducing the size dependence of DXA measurements and is particularly useful in children.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuggle, N.R., Curtis, E.M., Ward, K. et al. Fracture prediction, imaging and screening in osteoporosis. Nat Rev Endocrinol 15, 535–547 (2019). https://doi.org/10.1038/s41574-019-0220-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0220-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing