Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neonatal cholestasis: emerging molecular diagnostics and potential novel therapeutics

Abstract

Neonatal cholestasis is a group of rare disorders of impaired bile flow characterized by conjugated hyperbilirubinaemia in the newborn and young infant. Neonatal cholestasis is never physiological but rather is a sign of hepatobiliary and/or metabolic disorders, some of which might be fatal if not identified and treated rapidly. A step-wise timely evaluation is essential to quickly identify those causes amenable to treatment and to offer accurate prognosis. The aetiology of neonatal cholestasis now includes an expanding group of molecularly defined entities with overlapping clinical presentations. In the past two decades, our understanding of the molecular basis of many of these cholestatic diseases has improved markedly. Simultaneous next-generation sequencing for multiple genes and whole-exome or whole-genome sequencing now enable rapid and affordable molecular diagnosis for many of these disorders that cannot be directly diagnosed from standard blood tests or liver biopsy. Unfortunately, despite these advances, the aetiology and optimal therapeutic approach of the most common of these disorders, biliary atresia, remain unclear. The goals of this Review are to discuss the aetiologies, algorithms for evaluation and current and emerging therapeutic options for neonatal cholestasis.

Key points

  • Early recognition and expedited evaluation of an infant with cholestasis are of utmost importance, as neonatal cholestasis is never physiological and often requires immediate treatment or intervention.

  • Cost-effective methods to reliably screen for biliary atresia in the first month of life are needed to improve age at diagnosis and Kasai hepatoportoenterostomy for infants with biliary atresia.

  • New genetic causes of neonatal cholestasis are being discovered at a rapid rate owing to the advent of next-generation gene-sequencing technologies and sophisticated bioinformatics.

  • Use of genetic testing might enable us to rapidly identify genetic causes of cholestasis without the need for invasive procedures and might lead to new precision treatments.

  • Multiple sites exist within the hepatobiliary tree where bile formation or flow can be impaired, resulting in neonatal cholestasis; these sites are potential targets for new pharmacological therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transport proteins involved in enterohepatic circulation of bile acids.
Fig. 2: Current and proposed emerging algorithms for evaluation of neonatal cholestasis.
Fig. 3: Imaging and histopathological findings of biliary atresia.
Fig. 4: A stage-based approach to the treatment of neonatal cholestasis.
Fig. 5: Targets for new therapies in development for the treatment of cholestasis.

Similar content being viewed by others

References

  1. Kelly, D. A. & Stanton, A. Jaundice in babies: implications for community screening for biliary atresia. BMJ 310, 1172–1173 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bartlett, M. & Gourley, G. in Liver Disease in Children 4th edn (eds Suchy, F. J., Sokol, R. J. & Balistreri, W. F.) 177–198 (Cambridge Univ. Press, 2014).

  3. Fawaz, R. et al. Guideline for the evaluation of cholestatic jaundice in infants: joint recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J. Pediatr. Gastroenterol. Nutr. 64, 154–168 (2017).

    CAS  PubMed  Google Scholar 

  4. Feldman, A. & Suchy, F. J. in Liver Disease in Children 4th edn (eds Suchy, F. J., Sokol, R. J. & Balistreri, W. F.) 101–110 (Cambridge Univ. Press, 2014).

  5. Harpavat, S., Finegold, M. J. & Karpen, S. J. Patients with biliary atresia have elevated direct/conjugated bilirubin levels shortly after birth. Pediatrics 128, e1428–e1433 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. Harpavat, S., Garcia-Prats, J. A. & Shneider, B. L. Newborn bilirubin screening for biliary atresia. N. Engl. J. Med. 375, 605–606 (2016).

    PubMed  Google Scholar 

  7. Harpavat, S. et al. Newborn direct or conjugated bilirubin measurements as a potential screen for biliary atresia. J. Pediatr. Gastroenterol. Nutr. 62, 799–803 (2016).

    CAS  PubMed  Google Scholar 

  8. Chardot, C. et al. Improving outcomes of biliary atresia: French national series 1986–2009. J. Hepatol. 58, 1209–1217 (2013).

    PubMed  Google Scholar 

  9. Serinet, M. O. et al. Impact of age at Kasai operation on its results in late childhood and adolescence: a rational basis for biliary atresia screening. Pediatrics 123, 1280–1286 (2009).

    PubMed  Google Scholar 

  10. Schreiber, R. A. et al. Biliary atresia: the Canadian experience. J. Pediatr. 151, 659–665 (2007).

    PubMed  Google Scholar 

  11. Hussein, M., Howard, E. R., Mieli-Vergani, G. & Mowat, A. P. Jaundice at 14 days of age: exclude biliary atresia. Arch. Dis. Child 66, 1177–1179 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mieli-Vergani, G., Howard, E. R., Portman, B. & Mowat, A. P. Late referral for biliary atresia — missed opportunities for effective surgery. Lancet 1, 421–423 (1989).

    CAS  PubMed  Google Scholar 

  13. Lee, W. S. Pre-admission consultation and late referral in infants with neonatal cholestasis. J. Paediatr. Child Health 44, 57–61 (2008).

    PubMed  Google Scholar 

  14. Sokol, R. J. et al. Screening and outcomes in biliary atresia: summary of a National Institutes of Health workshop. Hepatology 46, 566–581 (2007).

    CAS  PubMed  Google Scholar 

  15. Lien, T. H. et al. Effects of the infant stool color card screening program on 5-year outcome of biliary atresia in Taiwan. Hepatology 53, 202–208 (2011).

    PubMed  Google Scholar 

  16. Hopkins, P. C., Yazigi, N. & Nylund, C. M. Incidence of biliary atresia and timing of hepatoportoenterostomy in the United States. J. Pediatr. 187, 253–257 (2017).

    PubMed  Google Scholar 

  17. Herbst, S. M. et al. Taking the next step forward - diagnosing inherited infantile cholestatic disorders with next generation sequencing. Mol. Cell. Probes 29, 291–298 (2015).

    CAS  PubMed  Google Scholar 

  18. Wang, N. L. et al. A specially designed multi-gene panel facilitates genetic diagnosis in children with intrahepatic cholestasis: simultaneous test of known large insertions/deletions. PLOS ONE 11, e0164058 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. Matte, U. et al. Analysis of gene mutations in children with cholestasis of undefined etiology. J. Pediatr. Gastroenterol. Nutr. 51, 488–493 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. Togawa, T. et al. Molecular genetic dissection and neonatal/infantile intrahepatic cholestasis using targeted next-generation sequencing. J. Pediatr. 171, 171–177 (2016).

    PubMed  Google Scholar 

  21. Karpen, S. et al. Use of a comprehensive 66 gene panel to diagnose the causes of cholestasis in >700 individuals [abstract 1213]. Hepatology 66 (Suppl. 1), 655A (2017).

    Google Scholar 

  22. Suchy, F. J. Neonatal cholestasis. Pediatr. Rev. 25, 388–396 (2004).

    PubMed  Google Scholar 

  23. Balistreri, W. F. & Bezerra, J. A. Whatever happened to “neonatal hepatitis”. Clin. Liver Dis. 10, 27–53 (2006).

    PubMed  Google Scholar 

  24. Yerushalmi, B. et al. Niemann-pick disease type C in neonatal cholestasis at a North American center. J. Pediatr. Gastroenterol. Nutr. 35, 44–50 (2002).

    PubMed  Google Scholar 

  25. Lu, Y. B., Peng, F., Li, M. X., Kobayashi, K. & Saheki, T. [Progresses and perspectives in the study on citrin deficiency]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 23, 655–658 (2006).

    CAS  PubMed  Google Scholar 

  26. Satrom, K. & Gourley, G. Cholestasis in preterm infants. Clin. Perinatol. 43, 355–373 (2016).

    PubMed  Google Scholar 

  27. Hoang, V. et al. Percutaneously inserted central catheter for total parenteral nutrition in neonates: complications rates related to upper versus lower extremity insertion. Pediatrics 121, e1152–e1159 (2008).

    PubMed  Google Scholar 

  28. Hsieh, M. H. et al. Parenteral nutrition-associated cholestasis in premature babies: risk factors and predictors. Pediatr. Neonatol. 50, 202–207 (2009).

    PubMed  Google Scholar 

  29. Lee, W. S. & Sokol, R. J. Intestinal microbiota, lipids, and the pathogenesis of intestinal failure-associated liver disease. J. Pediatr. 167, 519–526 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Balistreri, W. F. et al. Intrahepatic cholestasis: summary of an American Association for the Study of Liver Diseases single-topic conference. Hepatology 42, 222–235 (2005).

    PubMed  Google Scholar 

  31. Gonzales, E. et al. Liver diseases related to MDR3 (ABCB4) gene deficiency. Front. Biosci. (Landmark Ed) 14, (4242–4256 (2009).

    Google Scholar 

  32. Liu, L. Y., Wang, X. H., Lu, Y., Zhu, Q. R. & Wang, J. S. Association of variants of ABCB11 with transient neonatal cholestasis. Pediatr. Int. 55, 138–144 (2013).

    CAS  PubMed  Google Scholar 

  33. Goldschmidt, M. L. et al. Increased frequency of double and triple heterozygous gene variants in children with intrahepatic cholestasis. Hepatol. Res. 46, 306–311 (2016).

    CAS  PubMed  Google Scholar 

  34. Boyer, J. L. Bile formation and secretion. Compr. Physiol. 3, 1035–1078 (2013).

    PubMed  PubMed Central  Google Scholar 

  35. Wagner, M. & Trauner, M. Recent advances in understanding and managing cholestasis. F1000Res 5, 705 (2016).

    Google Scholar 

  36. Lee, W. S. & Sokol, R. J. Mitochondrial hepatopathies: advances in genetics, therapeutic approaches, and outcomes. J. Pediatr. 163, 942–948 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Herzog, D., Chessex, P., Martin, S. & Alvarez, F. Transient cholestasis in newborn infants with perinatal asphyxia. Can. J. Gastroenterol. 17, 179–182 (2003).

    CAS  PubMed  Google Scholar 

  38. Stieger, B. Recent insights into the function and regulation of the bile salt export pump (ABCB11). Curr. Opin. Lipidol. 20, 176–181 (2009).

    CAS  PubMed  Google Scholar 

  39. Feldman, A. & Sokol, R. J. Alpha-1-antitrypsin deficiency: an important cause of pediatric liver disease. Lung Health Prof. Mag. 4, 8–11 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. Koo, K. A. et al. Biliatresone, a reactive natural toxin from Dysphania glomulifera and D. littoralis: discovery of the toxic moiety 1,2-diaryl-2-propenone. Chem. Res. Toxicol. 28, 1519–1521 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Waisbourd-Zinman, O. et al. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology 64, 880–893 (2016).

    CAS  PubMed  Google Scholar 

  42. El Kasmi, K. C. et al. Phytosterols promote liver injury and Kupffer cell activation in parenteral nutrition-associated liver disease. Sci. Transl Med. 5, 206ra137 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. Berauer, J. P. et al. Identification of PKD1L1 gene variants in children with the biliary atresia splenic malformation syndrome. Hepatology https://doi.org/10.1002/hep.30515 (2019).

    Article  PubMed  Google Scholar 

  44. Feranchak, A. P. & Sokol, R. J. Cholangiocyte biology and cystic fibrosis liver disease. Semin. Liver Dis. 21, 471–488 (2001).

    CAS  PubMed  Google Scholar 

  45. Chinsky, J. M. et al. Diagnosis and treatment of tyrosinemia type I: a US and Canadian consensus group review and recommendations. Genet. Med. 19, 1380 (2017).

    Google Scholar 

  46. Demir, H. et al. Serum alpha-fetoprotein levels in neonatal cholestasis. Turk. J. Pediatr. 55, 152–157 (2013).

    PubMed  Google Scholar 

  47. Sundaram, S. S., Bove, K. E., Lovell, M. A. & Sokol, R. J. Mechanisms of disease: inborn errors of bile acid synthesis. Nat. Clin. Pract. Gastroenterol. Hepatol. 5, 456–468 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mittal, V. et al. Role of abdominal sonography in the preoperative diagnosis of extrahepatic biliary atresia in infants younger than 90 days. AJR Am. J. Roentgenol. 196, W438–W445 (2011).

    PubMed  Google Scholar 

  49. Kianifar, H. R. et al. Accuracy of hepatobiliary scintigraphy for differentiation of neonatal hepatitis from biliary atresia: systematic review and meta-analysis of the literature. Pediatr. Radiol. 43, 905–919 (2013).

    PubMed  Google Scholar 

  50. Yang, J. G., Ma, D. Q., Peng, Y., Song, L. & Li, C. L. Comparison of different diagnostic methods for differentiating biliary atresia from idiopathic neonatal hepatitis. Clin. Imaging 33, 439–446 (2009).

    PubMed  Google Scholar 

  51. Liu, B. et al. Three-dimensional magnetic resonance cholangiopancreatography for the diagnosis of biliary atresia in infants and neonates. PLOS ONE 9, e88268 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. Meyers, R. L. et al. Percutaneous cholecysto-cholangiography in the diagnosis of obstructive jaundice in infants. J. Pediatr. Surg. 39, 16–18 (2004).

    PubMed  Google Scholar 

  53. Jensen, M. K. et al. HIDA, percutaneous transhepatic cholecysto-cholangiography and liver biopsy in infants with persistent jaundice: can a combination of PTCC and liver biopsy reduce unnecessary laparotomy? Pediatr. Radiol. 42, 32–39 (2012).

    PubMed  Google Scholar 

  54. Shanmugam, N. P. et al. Selective use of endoscopic retrograde cholangiopancreatography in the diagnosis of biliary atresia in infants younger than 100 days. J. Pediatr. Gastroenterol. Nutr. 49, 435–441 (2009).

    PubMed  Google Scholar 

  55. Zerbini, M. C. et al. Liver biopsy in neonatal cholestasis: a review on statistical grounds. Mod. Pathol. 10, 793–799 (1997).

    CAS  PubMed  Google Scholar 

  56. Russo, P. et al. Design and validation of the biliary atresia research consortium histologic assessment system for cholestasis in infancy. Clin. Gastroenterol. Hepatol. 9, 357–362 (2011).

    PubMed  PubMed Central  Google Scholar 

  57. Russo, P. et al. Key histopathologic features of liver biopsies that distinguish biliary atresia from other causes of infantile cholestasis and their correlation with outcome: a multicenter study. Am. J. Surg. Pathol. 40, 1601–1615 (2016).

    PubMed  PubMed Central  Google Scholar 

  58. Haafiz, A. B. Liver fibrosis in biliary atresia. Expert Rev. Gastroenterol. Hepatol. 4, 335–343 (2010).

    PubMed  Google Scholar 

  59. Hanquinet, S. et al. Contribution of acoustic radiation force impulse (ARFI) elastography to the ultrasound diagnosis of biliary atresia. Pediatr. Radiol. 45, 1489–1495 (2015).

    PubMed  Google Scholar 

  60. Leschied, J. R. et al. Shear wave elastography helps differentiate biliary atresia from other neonatal/infantile liver diseases. Pediatr. Radiol. 45, 366–375 (2015).

    PubMed  Google Scholar 

  61. Wu, J. F. et al. Transient elastography is useful in diagnosing biliary atresia and predicting prognosis after hepatoportoenterostomy. Hepatology 68, 616–624 (2018).

    PubMed  Google Scholar 

  62. Metzker, M. L. Sequencing technologies - the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

    CAS  PubMed  Google Scholar 

  63. Trauner, M., Fuchs, C. D., Halilbasic, E. & Paumgartner, G. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology 65, 1393–1404 (2017).

    PubMed  Google Scholar 

  64. Shneider, B. L. et al. Portal hypertension in children and young adults with biliary atresia. J. Pediatr. Gastroenterol. Nutr. 55, 567–573 (2012).

    PubMed  PubMed Central  Google Scholar 

  65. Feldman, A. G. & Sokol, R. J. Neonatal cholestasis. Neoreviews https://doi.org/10.1542/neo.14-2-e63 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yazigi, N. A. Long term outcomes after pediatric liver transplantation. Pediatr. Gastroenterol. Hepatol. Nutr. 16, 207–218 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. Martin, S. R., Atkison, P., Anand, R., Lindblad, A. S. & Group, S. R. Studies of pediatric liver transplantation 2002: patient and graft survival and rejection in pediatric recipients of a first liver transplant in the United States and Canada. Pediatr. Transplant. 8, 273–283 (2004).

    CAS  PubMed  Google Scholar 

  68. Heubi, J. E., Bove, K. E. & Setchell, K. D. R. Oral cholic acid is efficacious and well tolerated in patients with bile acid synthesis and Zellweger spectrum disorders. J. Pediatr. Gastroenterol. Nutr. 66, e57–e59 (2018).

    PubMed  Google Scholar 

  69. Santra, S. & Baumann, U. Experience of nitisinone for the pharmacological treatment of hereditary tyrosinaemia type 1. Expert Opin. Pharmacother. 9, 1229–1236 (2008).

    CAS  PubMed  Google Scholar 

  70. Demirbas, D., Brucker, W. J. & Berry, G. T. Inborn errors of metabolism with hepatopathy: metabolism defects of galactose, fructose, and tyrosine. Pediatr. Clin. North Am. 65, 337–352 (2018).

    PubMed  Google Scholar 

  71. Wang, K. S. et al. Analysis of surgical interruption of the enterohepatic circulation as a treatment for pediatric cholestasis. Hepatology 65, 1645–1654 (2017).

    CAS  PubMed  Google Scholar 

  72. Lane, E. & Murray, K. F. Neonatal cholestasis. Pediatr. Clin. North Am. 64, 621–639 (2017).

    PubMed  Google Scholar 

  73. Sundaram, S. S., Mack, C. L., Feldman, A. G. & Sokol, R. J. Biliary atresia: indications and timing of liver transplantation and optimization of pretransplant care. Liver Transpl. 23, 96–109 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Feranchak, A. P., Suchy, F. J. & Sokol, R. J. in Liver Disease in Children 4th edn (eds Suchy, F. J., Sokol, R. J. & Balistreri, W. F.) 111–140 (Cambridge Univ. Press, 2014).

  75. Sullivan, J. S., Sundaram, S. S., Pan, Z. & Sokol, R. J. Parenteral nutrition supplementation in biliary atresia patients listed for liver transplantation. Liver Transpl. 18, 120–128 (2012).

    PubMed  PubMed Central  Google Scholar 

  76. Utterson, E. C. et al. Biliary atresia: clinical profiles, risk factors, and outcomes of 755 patients listed for liver transplantation. J. Pediatr. 147, 180–185 (2005).

    PubMed  Google Scholar 

  77. DeRusso, P. A. et al. Growth failure and outcomes in infants with biliary atresia: a report from the Biliary Atresia Research Consortium. Hepatology 46, 1632–1638 (2007).

    PubMed  Google Scholar 

  78. Campbell, A. L. & Herold, B. C. Immunization of pediatric solid-organ transplantation candidates: immunizations in transplant candidates. Pediatr. Transplant. 9, 652–661 (2005).

    PubMed  Google Scholar 

  79. Centers for Disease Control and Prevention. Recommended child and adolescent immunization schedule for ages 18 years or younger. CDC https://www.cdc.gov/vaccines/schedules/downloads/child/0-18yrs-child-combined-schedule.pdf (2019).

  80. Feldman, A. G., Feudtner, C. & Kempe, A. Reducing the underimmunization of transplant recipients. JAMA Pediatr. 172, 111–112 (2017).

    Google Scholar 

  81. Feldman, A. G., Sundaram, S. S., Beaty, B. L. & Kempe, A. Hospitalizations for respiratory syncytial virus and vaccine-preventable infections in the first 2 years after pediatric liver transplant. J. Pediatr. 182, 232–238 (2017).

    PubMed  Google Scholar 

  82. Alonso, E. M. et al. Factors predicting health-related quality of life in pediatric liver transplant recipients in the functional outcomes group. Pediatr. Transplant. 17, 605–611 (2013).

    PubMed  PubMed Central  Google Scholar 

  83. de Vries, W. et al. Overall quality of life in adult biliary atresia survivors with or without liver transplantation: results from a national cohort. Eur. J. Pediatr. Surg. 26, 349–356 (2016).

    PubMed  Google Scholar 

  84. Cai, S. Y. et al. Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response. JCI Insight 2, e90780 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Lindor, K. D. et al. Ursodeoxycholic acid in the treatment of primary biliary cirrhosis. Gastroenterology 106, 1284–1290 (1994).

    CAS  PubMed  Google Scholar 

  86. Heathcote, E. J. et al. The Canadian multicenter double-blind randomized controlled trial of ursodeoxycholic acid in primary biliary cirrhosis. Hepatology 19, 1149–1156 (1994).

    CAS  PubMed  Google Scholar 

  87. Combes, B. et al. Prolonged follow-up of patients in the U. S. multicenter trial of ursodeoxycholic acid for primary biliary cirrhosis. Am. J. Gastroenterol. 99, 264–268 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Poupon, R. E., Balkau, B., Eschwege, E. & Poupon, R. A multicenter, controlled trial of ursodiol for the treatment of primary biliary cirrhosis. UDCA-PBC Study Group. N. Engl. J. Med. 324, 1548–1554 (1991).

    CAS  PubMed  Google Scholar 

  89. Pares, A. et al. Long-term effects of ursodeoxycholic acid in primary biliary cirrhosis: results of a double-blind controlled multicentric trial. UDCA-Cooperative Group from the Spanish Association for the Study of the Liver. J. Hepatol. 32, 561–566 (2000).

    CAS  PubMed  Google Scholar 

  90. Corpechot, C. et al. Biochemical response to ursodeoxycholic acid and long-term prognosis in primary biliary cirrhosis. Hepatology 48, 871–877 (2008).

    CAS  PubMed  Google Scholar 

  91. Paumgartner, G. & Pusl, T. Medical treatment of cholestatic liver disease. Clin. Liver Dis. 12, 53–80 (2008).

    PubMed  Google Scholar 

  92. Zollner, G. et al. Expression of bile acid synthesis and detoxification enzymes and the alternative bile acid efflux pump MRP4 in patients with primary biliary cirrhosis. Liver Int. 27, 920–929 (2007).

    CAS  PubMed  Google Scholar 

  93. Marschall, H. U. et al. Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology 129, 476–485 (2005).

    PubMed  Google Scholar 

  94. Lindor, K. D. et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology 50, 808–814 (2009).

    CAS  PubMed  Google Scholar 

  95. Halilbasic, E. et al. Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2−/− mice. Hepatology 49, 1972–1981 (2009).

    CAS  PubMed  Google Scholar 

  96. Hohenester, S. et al. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 55, 173–183 (2012).

    CAS  PubMed  Google Scholar 

  97. Fickert, P. et al. 24-norUrsodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 130, 465–481 (2006).

    CAS  PubMed  Google Scholar 

  98. Moustafa, T. et al. Alterations in lipid metabolism mediate inflammation, fibrosis, and proliferation in a mouse model of chronic cholestatic liver injury. Gastroenterology 142, 140–151 (2012).

    CAS  PubMed  Google Scholar 

  99. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: the diagnosis and management of patients with primary biliary cholangitis. J. Hepatol. 67, 145–172 (2017).

    Google Scholar 

  100. Ali, A. H., Carey, E. J. & Lindor, K. D. Recent advances in the development of farnesoid X receptor agonists. Ann. Transl Med. 3, 5 (2015).

    PubMed  PubMed Central  Google Scholar 

  101. Kast, H. R. et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J. Biol. Chem. 277, 2908–2915 (2002).

    CAS  PubMed  Google Scholar 

  102. Beuers, U., Trauner, M., Jansen, P. & Poupon, R. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J. Hepatol. 62, S25–37 (2015).

    CAS  PubMed  Google Scholar 

  103. Huang, L. et al. Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J. Biol. Chem. 278, 51085–51090 (2003).

    CAS  PubMed  Google Scholar 

  104. Moschetta, A., Bookout, A. L. & Mangelsdorf, D. J. Prevention of cholesterol gallstone disease by FXR agonists in a mouse model. Nat. Med. 10, 1352–1358 (2004).

    CAS  PubMed  Google Scholar 

  105. Halilbasic, E., Baghdasaryan, A. & Trauner, M. Nuclear receptors as drug targets in cholestatic liver diseases. Clin. Liver Dis. 17, 161–189 (2013).

    PubMed  PubMed Central  Google Scholar 

  106. Tran, M., Liu, Y., Huang, W. & Wang, L. Nuclear receptors and liver disease: summary of the 2017 basic research symposium. Hepatol. Commun. 2, 765–777 (2018).

    PubMed  PubMed Central  Google Scholar 

  107. Shneider, B. L. et al. Placebo-controlled randomized trial of an intestinal bile salt transport inhibitor for pruritus in alagille syndrome. Hepatol. Commun. 2, 1184–1198 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Baghdasaryan, A. et al. Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis. J. Hepatol. 64, 674–681 (2016).

    CAS  PubMed  Google Scholar 

  109. Miethke, A. G. et al. Pharmacological inhibition of apical sodium-dependent bile acid transporter changes bile composition and blocks progression of sclerosing cholangitis in multidrug resistance 2 knockout mice. Hepatology 63, 512–523 (2016).

    CAS  PubMed  Google Scholar 

  110. Ding, L., Yang, L., Wang, Z. & Huang, W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm. Sin. B 5, 135–144 (2015).

    PubMed  PubMed Central  Google Scholar 

  111. Thompson, R. J. et al. Phase 2 open label efficacy and safety study of the apical sodium-depnedent bile acid transporter inhibitor maralixibat in children with progressive familial intrahepatic cholestasis: 48-week interim efficacy analysis. Hepatology 66, 57A (2017).

    Google Scholar 

  112. Shneider, B. L. et al. Results of ITCH, a multi-center randomized double-blind placebo-controlled trial of maralixibat, an ileal Apical Sodium-dependent Bile Acid Transporter Inhibitor (ASBTi), for pruritus in Alagille Syndrome (ALGS). Hepatology 66, 84A (2017).

    Google Scholar 

  113. Slijepcevic, D. et al. Hepatic uptake of conjugated bile acids is mediated by both sodium taurocholate cotransporting polypeptide and organic anion transporting polypeptides and modulated by intestinal sensing of plasma bile acid levels in mice. Hepatology 66, 1631–1643 (2017).

    CAS  PubMed  Google Scholar 

  114. Zema, M. J. Colesevelam hydrochloride: evidence for its use in the treatment of hypercholesterolemia and type 2 diabetes mellitus with insights into mechanism of action. Core Evid. 7, 61–75 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Cortez, L. & Sim, V. The therapeutic potential of chemical chaperones in protein folding diseases. Prion 8, 28938 (2014).

    PubMed  Google Scholar 

  116. Hayashi, H. & Sugiyama, Y. 4-Phenylbutyrate enhances the cell surface expression and the transport capacity of wild-type and mutated bile salt export pumps. Hepatology 45, 1506–1516 (2007).

    CAS  PubMed  Google Scholar 

  117. Hasegawa, Y. et al. Intractable itch relieved by 4-phenylbutyrate therapy in patients with progressive familial intrahepatic cholestasis type 1. Orphanet J. Rare Dis. 9, 89 (2014).

    PubMed  PubMed Central  Google Scholar 

  118. van der Velden, L. M. et al. Folding defects in P-type ATP 8B1 associated with hereditary cholestasis are ameliorated by 4-phenylbutyrate. Hepatology 51, 286–296 (2010).

    PubMed  Google Scholar 

  119. Gonzales, E. et al. Targeted pharmacotherapy in progressive familial intrahepatic cholestasis type 2: evidence for improvement of cholestasis with 4-phenylbutyrate. Hepatology 62, 558–566 (2015).

    CAS  PubMed  Google Scholar 

  120. Verkade, H. J. et al. Biliary atresia and other cholestatic childhood diseases: advances and future challenges. J. Hepatol. 65, 631–642 (2016).

    PubMed  Google Scholar 

  121. Bezerra, J. A. et al. Use of corticosteroids after hepatoportoenterostomy for bile drainage in infants with biliary atresia: the START randomized clinical trial. JAMA 311, 1750–1759 (2014).

    PubMed  PubMed Central  Google Scholar 

  122. Sokol, R. J. et al. Intravenous immunoglobulin (IVIG) following portoenterostomy in infants with biliary atresia: a phase 1/2A trial [abstract LB-8]. Hepatology 64 (Suppl.), 1123A (2016).

    Google Scholar 

  123. Friedman, S. L. et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology 67, 1754–1767 (2018).

    CAS  PubMed  Google Scholar 

  124. Wang, K. S. Newborn screening for biliary atresia. Pediatrics 136, e1663–e1669 (2015).

    PubMed  Google Scholar 

  125. Tseng, J. J., Lai, M. S., Lin, M. C. & Fu, Y. C. Stool color card screening for biliary atresia. Pediatrics 128, e1209–e1215 (2011).

    PubMed  Google Scholar 

  126. Hsiao, C. H. et al. Universal screening for biliary atresia using an infant stool color card in Taiwan. Hepatology 47, 1233–1240 (2008).

    PubMed  Google Scholar 

  127. Mogul, D., Zhou, M., Intihar, P., Schwarz, K. & Frick, K. Cost-effective analysis of screening for biliary atresia with the stool color card. J. Pediatr. Gastroenterol. Nutr. 60, 91–98 (2015).

    PubMed  Google Scholar 

  128. Woolfson, J. P. et al. Province-wide biliary atresia home screening program in British Columbia: evaluation of first 2 years. J. Pediatr. Gastroenterol. Nutr. 66, 845–849 (2018).

    PubMed  Google Scholar 

  129. Franciscovich, A. et al. PoopMD, a mobile health application, accurately identifies infant acholic stools. PLOS ONE 10, e0132270 (2015).

    PubMed  PubMed Central  Google Scholar 

  130. Lertudomphonwanit, C. et al. Large-scale proteomics identifies MMP-7 as a sentinel of epithelial injury and of biliary atresia. Sci. Transl Med. 9, eaan8462 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.J.S. is supported in part by US National Institutes of Health (NIH) grants U01 DK062453 and UL1 TR002535. A.G.F. is supported by an NIH and National Center for Advancing Translational Sciences Clinical and Translational Science Award (KL2 TR002534) and a Children’s Hospital Colorado Research Scholar Award.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Ronald J. Sokol.

Ethics declarations

Competing interests

R.J.S. has consulted with Albireo, Alexion, Retrophin and Shire. A.G.F. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Gilbert syndrome

A benign condition caused by a decrease in the activity of UGT1A1 that leads to intermittent elevations in serum unconjugated or indirect bilirubin levels.

Crigler–Najjar syndrome

An autosomal recessive disorder caused by mutations in UGT1A1 that lead to markedly elevated serum unconjugated or indirect bilirubin levels.

Galactosaemia

An autosomal recessive disorder caused by mutations in GALT that result in an inability to metabolize galactose normally, affecting the liver, brain and lens of the eye.

Choledochal cyst

Congenital dilatation of the biliary system.

Biliary atresia

A progressive sclerosing inflammatory process of the extrahepatic and intrahepatic bile ducts in infants under 3 months of age that leads to fibrosis and obliteration of the biliary tree.

Hepatoportoenterostomy (HPE) or Kasai procedure

A surgical procedure for treatment of biliary atresia in which a Roux-en-Y loop of jejunum is connected to the porta hepatitis, enabling bile to flow from the liver to the intestines.

Alagille syndrome

An autosomal dominant disorder in which a mutation in JAG1 or NOTCH2 results in phenotypic abnormalities including interlobular bile duct paucity.

Tyrosinaemia type 1

An autosomal recessive disorder caused by a defect in the enzyme fumarylacetoacetate hydrolase resulting in accumulation of toxic intermediates including succinylacetone in tissues and organs, leading to hepatocellular damage, hepatocellular carcinoma and neurotoxicity.

Biliary atresia splenic malformation syndrome

A phenotype of biliary atresia in which patients have a combination of laterality (left–right differentiation) defects, including asplenia or polysplenia, midline liver, preduodenal portal vein, interruption of the inferior vena cava, intestinal malrotation, situs inversus or cardiac malformations.

Posterior embryotoxon

A prominent Schwalbe’s line, in which the corneal endothelium and the uveal trabecular meshwork join, that is seen commonly in patients with Alagille syndrome.

Hepatobiliary scintigraphy

A diagnostic imaging technique that evaluates hepatocellular function and patency of the biliary system by following a radiolabeled tracer into the liver and out through the biliary system into the small intestine.

Dubin–Johnson syndrome

A benign autosomal recessive disorder caused by mutations in ABCC2 that result in isolated elevated serum conjugated or direct bilirubin levels and a dark coloured liver.

Niemann–Pick disease type C

A lysosomal storage disease associated with mutations in NPC1 and NPC2, which results in cholesterol and lipid accumulation in the lysosomes of hepatocytes, causing cholestasis, and affects the spleen and brain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldman, A.G., Sokol, R.J. Neonatal cholestasis: emerging molecular diagnostics and potential novel therapeutics. Nat Rev Gastroenterol Hepatol 16, 346–360 (2019). https://doi.org/10.1038/s41575-019-0132-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0132-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing