Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biology and regulation of IL-2: from molecular mechanisms to human therapy

Abstract

IL-2 was first identified as a growth factor capable of driving the expansion of activated human T cell populations. In the more than 40 years since its discovery, a tremendous amount has been learned regarding the mechanisms that regulate the expression of both IL-2 and its cell surface receptor, its mechanisms of signalling and its range of biological actions. More recently, the mechanisms by which IL-2 regulates CD4+ T cell differentiation and function have been elucidated. IL-2 also regulates the effector and memory responses of CD8+ T cells, and the loss of IL-2 or responsiveness to IL-2 at least in part explains the exhausted phenotype that occurs during chronic viral infections and in tumour responses. These basic mechanistic studies have led to the therapeutic ability to manipulate the action of IL-2 on regulatory T (Treg) cells for the treatment of autoimmune disease and on CD8+ T cells for immunotherapy of cancer. IL-2 can have either positive or deleterious effects, and we discuss here recent ideas and approaches for manipulating the actions and overall net effects of IL-2 in disease settings, including cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IL-2–IL-2 receptor structure and gene regulation.
Fig. 2: A STAT5-bound super-enhancer regulates expression of the Il2ra gene.
Fig. 3: Roles of IL-2 interactions in CD4+ T helper cell differentiation.
Fig. 4: Interactions among CD4+ T cells, Treg cells, TFH cells and TFR cells within the germinal centre.
Fig. 5: Antibodies against IL-2 or IL-2 receptor mediate actions on specific cell subsets.
Fig. 6: Engineering cytokines and receptors for optimal therapeutic activity.

Similar content being viewed by others

References

  1. Morgan, D. A., Ruscetti, F. W. & Gallo, R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193, 1007–1008 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Robb, R. J., Munck, A. & Smith, K. A. T cell growth factor receptors. Quantitation, specificity, and biological relevance. J. Exp. Med. 154, 1455–1474 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liao, W., Lin, J. X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13–25 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Malek, T. R. & Castro, I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33, 153–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leonard, W. J. et al. Molecular cloning and expression of cDNAs for the human interleukin-2 receptor. Nature 311, 626–631 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Nikaido, T. et al. Molecular cloning of cDNA encoding human interleukin-2 receptor. Nature 311, 631–635 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Hatakeyama, M. et al. Interleukin-2 receptor beta chain gene: generation of three receptor forms by cloned human alpha and beta chain cDNA’s. Science 244, 551–556 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Takeshita, T. et al. Cloning of the gamma chain of the human IL-2 receptor. Science 257, 379–382 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Takeshita, T. et al. An associated molecule, p64, with IL-2 receptor beta chain. Its possible involvement in the formation of the functional intermediate-affinity IL-2 receptor complex. J. Immunol. 148, 2154–2158 (1992).

    CAS  PubMed  Google Scholar 

  10. Wang, X., Lupardus, P., Laporte, S. L. & Garcia, K. C. Structural biology of shared cytokine receptors. Annu. Rev. Immunol. 27, 29–60 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Nakamura, Y. et al. Heterodimerization of the IL-2 receptor beta- and gamma-chain cytoplasmic domains is required for signalling. Nature 369, 330–333 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Nelson, B. H., Lord, J. D. & Greenberg, P. D. Cytoplasmic domains of the interleukin-2 receptor beta and gamma chains mediate the signal for T cell proliferation. Nature 369, 333–336 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  14. Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Siegel, J. P., Sharon, M., Smith, P. L. & Leonard, W. J. The IL-2 receptor beta chain (p70): role in mediating signals for LAK, NK, and proliferative activities. Science 238, 75–78 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Grimm, E. A., Mazumder, A., Zhang, H. Z. & Rosenberg, S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J. Exp. Med. 155, 1823–1841 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. Schmitt, E. et al. IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J. Immunol. 153, 3989–3996 (1994).

    CAS  PubMed  Google Scholar 

  18. Liao, W. et al. Opposing actions of IL-2 and IL-21 on Th9 differentiation correlate with their differential regulation of BCL6 expression. Proc. Natl Acad. Sci. USA 111, 3508–3513 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Malek, T. R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Liao, W., Lin, J. X., Wang, L., Li, P. & Leonard, W. J. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat. Immunol. 12, 551–559 (2011). This study demonstrates that IL-2 broadly influences T H cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cote-Sierra, J. et al. Interleukin 2 plays a central role in Th2 differentiation. Proc. Natl Acad. Sci. USA 101, 3880–3885 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liao, W. et al. Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor alpha-chain expression. Nat. Immunol. 9, 1288–1296 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Ballesteros-Tato, A. et al. Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 36, 847–856 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lenardo, M. et al. Mature T lymphocyte apoptosis—immune regulation in a dynamic and unpredictable antigenic environment. Annu. Rev. Immunol. 17, 221–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Weinberg, K. & Parkman, R. Severe combined immunodeficiency due to a specific defect in the production of interleukin-2. N. Engl. J. Med. 322, 1718–1723 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Pahwa, R. et al. Recombinant interleukin 2 therapy in severe combined immunodeficiency disease. Proc. Natl Acad. Sci. USA 86, 5069–5073 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Noguchi, M. et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Kondo, M. et al. Sharing of the interleukin-2 (IL-2) receptor gamma chain between receptors for IL-2 and IL-4. Science 262, 1874–1877 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Russell, S. M. et al. Interleukin-2 receptor gamma chain: a functional component of the interleukin-4 receptor. Science 262, 1880–1883 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Noguchi, M. et al. Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 262, 1877–1880 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Russell, S. M. et al. Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science 266, 1042–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Kimura, Y. et al. Sharing of the IL-2 receptor gamma chain with the functional IL-9 receptor complex. Int. Immunol. 7, 115–120 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Giri, J. G. et al. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 13, 2822–2830 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Asao, H. et al. Cutting edge: the common gamma-hain is an indispensable subunit of the IL-21 receptor complex. J. Immunol. 167, 1–5 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Kovanen, P. E. & Leonard, W. J. Cytokines and immunodeficiency diseases: critical roles of the gamma(c)-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol. Rev. 202, 67–83 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Recher, M. et al. IL-21 is the primary common gamma chain-binding cytokine required for human B cell differentiation in vivo. Blood 118, 6824–6835 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ozaki, K. et al. A critical role for IL-21 in regulating immunoglobulin production. Science 298, 1630–1634 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Sharfe, N., Dadi, H. K., Shahar, M. & Roifman, C. M. Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc. Natl Acad. Sci. USA 94, 3168–3171 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Willerford, D. M. et al. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521–530 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Gilmour, K. C. et al. Defective expression of the interleukin-2/interleukin-15 receptor beta subunit leads to a natural killer cell-deficient form of severe combined immunodeficiency. Blood 98, 877–879 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Suzuki, H. et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 268, 1472–1476 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Muller, M. R. & Rao, A. NFAT, immunity and cancer: a transcription factor comes of age. Nat. Rev. Immunol. 10, 645–656 (2010).

    Article  PubMed  CAS  Google Scholar 

  45. Rooney, J. W., Sun, Y. L., Glimcher, L. H. & Hoey, T. Novel NFAT sites that mediate activation of the interleukin-2 promoter in response to T cell receptor stimulation. Mol. Cell. Biol. 15, 6299–6310 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Flanagan, W. M., Corthesy, B., Bram, R. J. & Crabtree, G. R. Nuclear association of a T cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352, 803–807 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Emmel, E. A. et al. Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science 246, 1617–1620 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, H. P., Imbert, J. & Leonard, W. J. Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev. 17, 349–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Shapiro, V. S., Truitt, K. E., Imboden, J. B. & Weiss, A. CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. Mol. Cell. Biol. 17, 4051–4058 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Himes, S. R., Coles, L. S., Reeves, R. & Shannon, M. F. High mobility group protein I(Y) is required for function and for c-Rel binding to CD28 response elements within the GM-CSF and IL-2 promoters. Immunity 5, 479–489 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Tomkowicz, B. et al. TIM-3 suppresses anti-CD3/CD28-induced TCR activation and IL-2 expression through the NFAT signaling pathway. PLOS One 10, e0140694 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Yost, E. A., Hynes, T. R., Hartle, C. M., Ott, B. J. & Berlot, C. H. Inhibition of G-protein betagamma signaling enhances T cell receptor-stimulated interleukin 2 transcription in CD4 + T helper cells. PLOS One 10, e0116575 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Depper, J. M. et al. Regulation of interleukin 2 receptor expression: effects of phorbol diester, phospholipase C, and reexposure to lectin or antigen. J. Immunol. 133, 3054–3061 (1984).

    CAS  PubMed  Google Scholar 

  55. Leonard, W. J., Kronke, M., Peffer, N. J., Depper, J. M. & Greene, W. C. Interleukin 2 receptor gene expression in normal human T lymphocytes. Proc. Natl Acad. Sci. USA 82, 6281–6285 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. John, S., Robbins, C. M. & Leonard, W. J. An IL-2 response element in the human IL-2 receptor alpha chain promoter is a composite element that binds Stat5, Elf-1, HMG-I(Y) and a GATA family protein. EMBO J. 15, 5627–5635 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, H. P., Kelly, J. & Leonard, W. J. The basis for IL-2-induced IL-2 receptor alpha chain gene regulation: importance of two widely separated IL-2 response elements. Immunity 15, 159–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Lecine, P. et al. Elf-1 and Stat5 bind to a critical element in a new enhancer of the human interleukin-2 receptor alpha gene. Mol. Cell. Biol. 16, 6829–6840 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin, J. X. et al. Critical role of STAT5 transcription factor tetramerization for cytokine responses and normal immune function. Immunity 36, 586–599 (2012).This study demonstrates the importance of STAT tetramers in vivo and shows that STAT5 tetramers fine-tune IL-2 signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, P. et al. STAT5-mediated chromatin interactions in superenhancers activate IL-2 highly inducible genes: functional dissection of the Il2ra gene locus. Proc. Natl Acad. Sci. USA 114, 12111–12119 (2017). This study identifies a STAT5-based super-enhancer as the key regulatory element mediating IL-2-induced gene regulation of Il2ra and dissects the functional elements of the super-enhancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tang, Z. et al. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163, 1611–1627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Komor, A. C., Badran, A. H. & Liu, D. R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 169, 20–36 (2017).

    Article  CAS  Google Scholar 

  66. Simeonov, D. R. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111–115 (2017). This study identifies the functional importance of a non-coding autoimmunity risk variant in the IL2RA gene and shows that the kinetics of IL2RA gene expression can be important for disease development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Burren, O. S. et al. Chromosome contacts in activated T cells identify autoimmune disease candidate genes. Genome Biol. 18, 165 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lin, J. X. & Leonard, W. J. The common cytokine receptor gamma chain family of cytokines. Cold Spring Harb. Perspect. Biol. (2017).

  69. Ring, A. M. et al. Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15. Nat. Immunol. 13, 1187–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Markiewicz, S. et al. Tissue-specific activity of the gammac chain gene promoter depends upon an Ets binding site and is regulated by GA-binding protein. J. Biol. Chem. 271, 14849–14855 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Miyazaki, T. et al. Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science 266, 1045–1047 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Boussiotis, V. A. et al. Prevention of T cell anergy by signaling through the gamma c chain of the IL-2 receptor. Science 266, 1039–1042 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Macchi, P. et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65–68 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Russell, S. M. et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797–800 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Friedmann, M. C., Migone, T. S., Russell, S. M. & Leonard, W. J. Different interleukin 2 receptor beta-chain tyrosines couple to at least two signaling pathways and synergistically mediate interleukin 2-induced proliferation. Proc. Natl Acad. Sci. USA 93, 2077–2082 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Goldsmith, M. A. et al. Growth signal transduction by the human interleukin-2 receptor requires cytoplasmic tyrosines of the beta chain and non-tyrosine residues of the gamma c chain. J. Biol. Chem. 270, 21729–21737 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Dwyer, C. J. et al. Altered homeostasis and development of regulatory T cell subsets represent an IL-2R-dependent risk for diabetes in NOD mice. Sci. Signal. 10, eaam9563 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lin, J. X. et al. Critical functions for STAT5 tetramers in the maturation and survival of natural killer cells. Nat. Commun. 8, 1320 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Smith, G. A., Uchida, K., Weiss, A. & Taunton, J. Essential biphasic role for JAK3 catalytic activity in IL-2 receptor signaling. Nat. Chem. Biol. 12, 373–379 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Smith, G. A., Taunton, J. & Weiss, A. IL-2Rbeta abundance differentially tunes IL-2 signaling dynamics in CD4+ and CD8+ T cells. Sci. Signal. 10, eaan4931 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ross, S. H. et al. Phosphoproteomic analyses of interleukin 2 signaling reveal integrated JAK kinase-dependent and -independent networks in CD8+ T cells. Immunity 45, 685–700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Szabo, S. J., Sullivan, B. M., Peng, S. L. & Glimcher, L. H. Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol. 21, 713–758 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Oestreich, K. J., Mohn, S. E. & Weinmann, A. S. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat. Immunol. 13, 405–411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Oestreich, K. J. et al. Bcl-6 directly represses the gene program of the glycolysis pathway. Nat. Immunol. 15, 957–964 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ray, J. P. et al. The interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells. Immunity 43, 690–702 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhu, J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 75, 14–24 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhu, J., Cote-Sierra, J., Guo, L. & Paul, W. E. Stat5 activation plays a critical role in Th2 differentiation. Immunity 19, 739–748 (2003). This is the initial report demonstrating that STAT5 activation during T H 2 cell polarization is a crucial event for the production of IL-4.

    Article  CAS  PubMed  Google Scholar 

  88. Hondowicz, B. D. et al. Interleukin-2-dependent allergen-specific tissue-resident memory cells drive asthma. Immunity 44, 155–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Burkett, P. R., Meyer zu Horste, G. & Kuchroo, V. K. Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J. Clin. Invest. 125, 2211–2219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yang, X. P. et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat. Immunol. 12, 247–254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Quintana, F. J. et al. Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nat. Immunol. 13, 770–777 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim, H. S. et al. PTEN drives Th17 cell differentiation by preventing IL-2 production. J. Exp. Med. 214, 3381–3398 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Amadi-Obi, A. et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat. Med. 13, 711–718 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Kaplan, M. H. Th9 cells: differentiation and disease. Immunol. Rev. 252, 104–115 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Moretti, S. et al. A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nat. Commun. 8, 14017 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chinen, T. et al. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 17, 1322–1333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Josefowicz, S. Z. & Rudensky, A. Control of regulatory T cell lineage commitment and maintenance. Immunity 30, 616–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chung, Y. et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17, 983–988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Busse, D. et al. Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc. Natl Acad. Sci. USA 107, 3058–3063 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, Z. et al. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 528, 225–230 (2015).In this study, the authors use a new method, histocytometry, for phenotyping cells within a tissue with regard to their functional state and their activation state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Amado, I. F. et al. IL-2 coordinates IL-2-producing and regulatory T cell interplay. J. Exp. Med. 210, 2707–2720 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sitrin, J., Ring, A., Garcia, K. C., Benoist, C. & Mathis, D. Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2. J. Exp. Med. 210, 1153–1165 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gasteiger, G. et al. IL-2-dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells. J. Exp. Med. 210, 1167–1178 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Leon, B., Bradley, J. E., Lund, F. E., Randall, T. D. & Ballesteros-Tato, A. FoxP3 + regulatory T cells promote influenza-specific Tfh responses by controlling IL-2 availability. Nat. Commun. 5, 3495 (2014).

    Article  PubMed  CAS  Google Scholar 

  108. Linterman, M. A. et al. Foxp3 + follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975–982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Botta, D. et al. Dynamic regulation of T follicular regulatory cell responses by interleukin 2 during influenza infection. Nat. Immunol. 18, 1249–1260 (2017).This study characterizes the temporal sequence of IL-2 production and its effect on the production of T FR cells and T reg cells after influenza virus infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jandl, C. et al. IL-21 restricts T follicular regulatory T cell proliferation through Bcl-6 mediated inhibition of responsiveness to IL-2. Nat. Commun. 8, 14647 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wing, J. B. et al. A distinct subpopulation of CD25(-) T-follicular regulatory cells localizes in the germinal centers. Proc. Natl Acad. Sci. USA 114, E6400–E6409 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Henning, A. N., Roychoudhuri, R. & Restifo, N. P. Epigenetic control of CD8+ T cell differentiation.Nat. Rev. Immunol. 18, 340–356 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kalia, V. et al. Prolonged interleukin-2Ralpha expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 32, 91–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gong, D. & Malek, T. R. Cytokine-dependent Blimp-1 expression in activated T cells inhibits IL-2 production. J. Immunol. 178, 242–252 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Boulet, S., Daudelin, J. F. & Labrecque, N. IL-2 induction of Blimp-1 is a key in vivo signal for CD8 + short-lived effector T cell differentiation. J. Immunol. 193, 1847–1854 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Xin, A. et al. A molecular threshold for effector CD8+ T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nat. Immunol. 17, 422–432 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Beltra, J. C. et al. IL2Rbeta-dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection. Proc. Natl Acad. Sci. USA 113, E5444–5453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Blattman, J. N. et al. Therapeutic use of IL-2 to enhance antiviral T cell responses in vivo. Nat. Med. 9, 540–547 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. West, E. E. et al. PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. J. Clin. Invest. 123, 2604–2615 (2013).This paper demonstrates that combinatorial therapy with both IL-2 and PDL1 blockade could be effective in the activation of exhausted T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Moynihan, K. D. et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 22, 1402–1410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cully, M. Deal watch: IL-2 focus switches to stimulating Tregs. Nat. Rev. Drug Discov. 16, 595 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Letourneau, S. et al. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor alpha subunit CD25. Proc. Natl Acad. Sci. USA 107, 2171–2176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Boyman, O., Kovar, M., Rubinstein, M. P., Surh, C. D. & Sprent, J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311, 1924–1927 (2006).This is an early demonstration of cell-subset-specific effects of antibodies against IL-2.

    Article  CAS  PubMed  Google Scholar 

  125. Krieg, C., Letourneau, S., Pantaleo, G. & Boyman, O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc. Natl Acad. Sci. USA 107, 11906–11911 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Arenas-Ramirez, N. et al. Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci. Transl Med. 8, 367ra166 (2016).

    Article  PubMed  CAS  Google Scholar 

  127. Spangler, J. B. et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity 42, 815–825 (2015).This study provides a mechanistic understanding of differences in cell type specificity of IL-2-targeting antibodies, leading to the ability to specifically engineer therapeutic antibodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Webster, K. E. et al. In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J. Exp. Med. 206, 751–760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tang, Q. et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28, 687–697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Arce Vargas, F. et al. Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 46, 577–586 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vazquez-Lombardi, R. et al. Potent antitumour activity of interleukin-2-Fc fusion proteins requires Fc-mediated depletion of regulatory T cells. Nat. Commun. 8, 15373 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Koreth, J. et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365, 2055–2066 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Grinberg-Bleyer, Y. et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J. Exp. Med. 207, 1871–1878 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Saadoun, D. et al. Regulatory T cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 365, 2067–2077 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. He, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 22, 991–993 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Humrich, J. Y. et al. Rapid induction of clinical remission by low-dose interleukin-2 in a patient with refractory SLE. Ann. Rheum. Dis. 74, 791–792 (2015).

    Article  PubMed  Google Scholar 

  137. Mitra, S. et al. Interleukin-2 activity can be fine tuned with engineered receptor signaling clamps. Immunity 42, 826–838 (2015).This study describes IL-2 variants that represent the first cytokine partial agonists, including one with differential effects depending on the activation state of the cell and another that is a potent IL-2 antagonist and is effective as an IL-2 blocking agent both in vivo and in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Levin, A. M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484, 529–533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kagoya, Y. et al. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat. Med. 24, 352–359 (2018).This study describes an engineered CAR in which antigen can signal through the CAR and activate JAK–STAT3–STAT5 signalling pathways, leading to more effective antitumour activity in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018).This paper describes a method for engineering tumour-specific T cells that can be selectively expanded in vivo via the interaction of a mutant form of IL-2 with an altered IL-2 receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 16, 843–862 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Telliez, J. B. et al. Discovery of a JAK3-selective inhibitor: functional differentiation of JAK3-selective inhibition over pan-JAK or JAK1-selective inhibition. ACS Chem. Biol. 11, 3442–3451 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Thorarensen, A. et al. Design of a janus kinase 3 (JAK3) specific inhibitor 1-((2 S,5 R)-5-((7 H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-methylpiperidin-1-yl)prop -2-en-1-one (PF-06651600) allowing for the interrogation of JAK3 signaling in humans. J. Med. Chem. 60, 1971–1993 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Division of Intramural Research, National Heart, Lung, and Blood Institute, US National Institutes of Health.

Reviewer information

Nature Reviews Immunology thanks O. Boyman and T. Malek for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to research and discussion of content of the article and to writing, reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Warren J. Leonard.

Ethics declarations

Competing interests

W.J.L. is an inventor on patents related to IL-2 partial agonists. R.S. and P.L. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://www.clinicaltrials.gov

Glossary

X-linked severe combined immunodeficiency

(XSCID). A profound immunodeficiency that accounts for approximately half of all cases of SCID. It is characterized by greatly diminished numbers of T cells and natural killer cells. B cells are normal in number but are non-functional.

Super-enhancer

A cluster of transcriptional regulatory elements, often spanning an extended region, that functionally modulate gene expression as a unit.

Chromatin interaction analysis using paired-end tag sequencing

(ChIA-PET). A method for identifying pairs of regions associated with a particular protein by combining chromatin immunoprecipitation with the isolation of interacting DNA fragments.

Tiled CRISPR activation

The use of CRISPR activation (CRISPRa) for high-throughput functional enhancer discovery with libraries of guide RNAs that tile genomic loci of interest.

Promoter capture Hi-C

The incorporation of a sequence capture step into a Hi-C protocol to enable high-resolution analysis of annotated promoters and their interacting regions from Hi-C libraries.

Chronic-smouldering forms of adult T cell leukaemia/lymphoma

As opposed to the more aggressive acute and lymphomatous forms of adult T cell leukaemia, the chronic and smouldering forms are slow-growing forms of the disease, with milder symptoms. These leukaemias are caused by human T cell lymphotropic virus type 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spolski, R., Li, P. & Leonard, W.J. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol 18, 648–659 (2018). https://doi.org/10.1038/s41577-018-0046-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0046-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing