Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiorenal complications of immune checkpoint inhibitors

Abstract

The development of immune checkpoint inhibitors (ICIs) has driven a revolutionary change in cancer treatment. Although traditional chemotherapeutic agents remain the first-line option for most cancers, targeted immune therapies are emerging as standard treatments for advanced-stage cancers. These agents target cell surface checkpoint proteins to stimulate the recognition and destruction of cancer cells by the immune system. Clinical studies have demonstrated these immunotherapeutics to elicit favourable antitumour responses in a variety of chemotherapy-refractory malignancies. However, use of these agents can also induce immune-related adverse events (irAEs) in off-target organs, including the heart and kidney. The most common manifestations of heart and kidney damage are myocarditis and acute interstitial nephritis, respectively, but other manifestations have been reported and, although rare, these off-target effects can be life threatening. Available data suggest that ICIs induce their off-target effects through several mechanisms, including direct binding to cell surface proteins expressed in healthy tissue, activation of T cells that cross-react with off-target tissues, generation of autoantibodies or by increasing levels of pro-inflammatory cytokines. Greater understanding of the adverse effects of cancer immunotherapies and the underlying mechanisms will facilitate the development of biomarkers to identify at-risk patients and approaches to prevent these irAEs.

Key points

  • Tumours use immune checkpoint pathways including programmed cell death protein 1 (PD-1)-mediated and cytotoxic T lymphocyte antigen 4 (CTLA4)-mediated pathways to evade recognition and destruction by the host immune system.

  • Immune checkpoint inhibitors (ICIs) target these checkpoint pathways and re-programme the host immune system to activate an antitumour immune response.

  • The use of ICIs is rapidly expanding for a variety of cancers owing to their established clinical efficacy; however, they are associated with a variety of immune-mediated injuries in different organs, including the kidney and heart.

  • Immune-mediated kidney injury with ICIs most commonly manifests as acute interstitial nephritis, although other patterns of renal injury have also been described; early treatment with corticosteroids typically reverses kidney injury.

  • Cardiac effects of ICIs are highly variable, but myocarditis is the most reported form of ICI-associated cardiotoxicity; this cardiotoxicity is generally reversible with corticosteroids, but fatal steroid-resistant cases have been reported.

  • Biomarker development and improved understanding of the mechanisms of immune-related adverse events will be crucial to aid early diagnosis and develop targeted treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of cancer immunoediting.
Fig. 2: Cell surface ligands involved in T cell activation and inhibition.
Fig. 3: The immune checkpoint molecules CTLA4 and PD-1 regulate different immune compartments.
Fig. 4: Acute interstitial nephritis in the setting of immune checkpoint inhibitor therapy.
Fig. 5: Post-mortem analysis of the heart of a patient who developed cardiogenic shock while on nivolumab monotherapy.

All images courtesy of Douglas Rottmann, Yale University, USA.

Fig. 6: Potential mechanisms of immune-related adverse events.

Similar content being viewed by others

References

  1. Dunn, G. P., Old, L. J. & Schreiber, R. D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. Menke, J. et al. Programmed death 1 ligand (PD-L) 1 and PD-L2 limit autoimmune kidney disease: distinct roles. J. Immunol. 179, 7466–7477 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. Burnet, M. Cancer; a biological approach. I. The processes of control. Br. Med. J. 1, 779–786 (1957).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Thomas, L. On immunosurveillance in human cancer. Yale J. Biol. Med. 55, 329–333 (1982).

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Burnet, F. M. The concept of immunological surveillance. Prog. Exp. Tumor Res. 13, 1–27 (1970).

    Article  PubMed  CAS  Google Scholar 

  6. Stutman, O. Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice. Science 183, 534–536 (1974).

    Article  PubMed  CAS  Google Scholar 

  7. Kaplan, D. H. et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc. Natl Acad. Sci. USA 95, 7556–7561 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. van den Broek, M. E. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 184, 1781–1790 (1996).

    Article  PubMed  Google Scholar 

  9. Engels, E. A. et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA 306, 1891–1901 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hall, E. C., Pfeiffer, R. M., Segev, D. L. & Engels, E. A. Cumulative incidence of cancer after solid organ transplantation. Cancer 119, 2300–2308 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Suranyi, M. G. et al. Advanced donor-origin melanoma in a renal transplant recipient: immunotherapy, cure, and retransplantation. Transplantation 66, 655–661 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. MacKie, R. M., Reid, R. & Junor, B. Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N. Engl. J. Med. 348, 567–568 (2003).

    Article  PubMed  Google Scholar 

  13. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  PubMed  CAS  Google Scholar 

  14. Murakami, N., Motwani, S. & Riella, L. V. Renal complications of immune checkpoint blockade. Curr. Problems Cancer 41, 100–110 (2017).

    Article  Google Scholar 

  15. Weber, J. Immune checkpoint proteins: a new therapeutic paradigm for cancer — preclinical background: CTLA-4 and PD-1 blockade. Semin. Oncol. 37, 430–439 (2010).

    Article  PubMed  CAS  Google Scholar 

  16. Appleman, L. J., van Puijenbroek, A. A., Shu, K. M., Nadler, L. M. & Boussiotis, V. A. CD28 costimulation mediates down-regulation of p27kip1 and cell cycle progression by activation of the PI3K/PKB signaling pathway in primary human T cells. J. Immunol. 168, 2729–2736 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. Boise, L. H. et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-xL. Immunity. 1995. 3, 87–98. J. Immunol. 185, 3788–3799 (2010).

    PubMed  CAS  Google Scholar 

  18. Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T cell activation by distinct mechanisms. Mol. Cell. Biol. 25, 9543–9553 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ward, S. G., Westwick, J., Hall, N. D. & Sansom, D. M. Ligation of CD28 receptor by B7 induces formation of D-3 phosphoinositides in T lymphocytes independently of T cell receptor/CD3 activation. Eur. J. Immunol. 23, 2572–2577 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. Boussiotis, V. A. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N. Engl. J. Med. 375, 1767–1778 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Francisco, L. M., Sage, P. T. & Sharpe, A. H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 236, 219–242 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Riella, L. V., Paterson, A. M., Sharpe, A. H. & Chandraker, A. Role of the PD-1 pathway in the immune response. Am. J. Transplant. 12, 2575–2587 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Nguyen, L. T. & Ohashi, P. S. Clinical blockade of PD1 and LAG3 — potential mechanisms of action. Nat. Rev. Immunol. 15, 45–56 (2015).

    Article  PubMed  CAS  Google Scholar 

  24. Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).

    Article  PubMed  CAS  Google Scholar 

  25. Okazaki, T., Maeda, A., Nishimura, H., Kurosaki, T. & Honjo, T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl Acad. Sci. USA 98, 13866–13871 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. Sheppard, K. A. et al. PD-1 inhibits T cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett. 574, 37–41 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. Chemnitz, J. M., Parry, R. V., Nichols, K. E., June, C. H. & Riley, J. L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 173, 945–954 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. Linsley, P. S. et al. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 4, 535–543 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. Vandenborre, K. et al. Interaction of CTLA-4 (CD152) with CD80 or CD86 inhibits human T cell activation. Immunology 98, 413–421 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fallarino, F., Fields, P. E. & Gajewski, T. F. B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28. J. Exp. Med. 188, 205–210 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Downey, J. TCR/CD3 mediated stop-signal is decoupled in T cells from Ctla4 deficient mice. Immunol. Lett. 115, 70–72 (2008).

    Article  PubMed  CAS  Google Scholar 

  32. Schneider, H., Smith, X., Liu, H., Bismuth, G. & Rudd, C. E. CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur. J. Immunol. 38, 40–47 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Krummel, M. F. & Allison, J. P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 183, 2533–2540 (1996).

    Article  PubMed  CAS  Google Scholar 

  34. Rudd, C. E., Taylor, A. & Schneider, H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol. Rev. 229, 12–26 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  PubMed  CAS  Google Scholar 

  36. Perez, V. L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. Yamaguchi, T. et al. Construction of self-recognizing regulatory T cells from conventional T cells by controlling CTLA-4 and IL-2 expression. Proc. Natl Acad. Sci. USA 110, E2116–E2125 (2013).

    Article  PubMed  Google Scholar 

  38. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    Article  PubMed  CAS  Google Scholar 

  39. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. Okazaki, T. et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat. Med. 9, 1477–1483 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. Salama, A. D. et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J. Exp. Med. 198, 71–78 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Latchman, Y. E. et al. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc. Natl Acad. Sci. USA 101, 10691–10696 (2004).

    Article  PubMed  CAS  Google Scholar 

  43. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  PubMed  CAS  Google Scholar 

  44. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    Article  PubMed  CAS  Google Scholar 

  45. Paterson, A. M. et al. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J. Exp. Med. 212, 1603–1621 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Klocke, K., Sakaguchi, S., Holmdahl, R. & Wing, K. Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc. Natl Acad. Sci. USA 113, E2383–E2392 (2016).

    Article  PubMed  CAS  Google Scholar 

  47. Prokunina, L. et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat. Genet. 32, 666–669 (2002).

    Article  PubMed  CAS  Google Scholar 

  48. Huang, C. H. et al. Effects of genetic polymorphisms of programmed cell death 1 and its ligands on the development of ankylosing spondylitis. Rheumatology (Oxford) 50, 1809–1813 (2011).

    Article  CAS  Google Scholar 

  49. Barreto, M. et al. Evidence for CTLA4 as a susceptibility gene for systemic lupus erythematosus. Eur. J. Hum. Genet. 12, 620–626 (2004).

    Article  PubMed  CAS  Google Scholar 

  50. Ueda, H. et al. Association of the T cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

    Article  PubMed  CAS  Google Scholar 

  51. Vaidya, B. et al. An association between the CTLA4 exon 1 polymorphism and early rheumatoid arthritis with autoimmune endocrinopathies. Rheumatology (Oxford) 41, 180–183 (2002).

    Article  CAS  Google Scholar 

  52. Ahmadzadeh, M. et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537–1544 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Dong, H. et al. Tumor-associated B7-H1 promotes T cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. Curiel, T. J. et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med. 9, 562–567 (2003).

    Article  PubMed  CAS  Google Scholar 

  55. Kuang, D. M. et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med. 206, 1327–1337 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Nazareth, M. R. et al. Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells. J. Immunol. 178, 5552–5562 (2007).

    Article  PubMed  CAS  Google Scholar 

  57. Han, Y. et al. Human CD14+ CTLA-4+ regulatory dendritic cells suppress T cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology 59, 567–579 (2014).

    Article  PubMed  CAS  Google Scholar 

  58. Liakou, C. I. et al. CTLA-4 blockade increases IFNgamma-producing CD4+ ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc. Natl Acad. Sci. USA 105, 14987–14992 (2008).

    Article  PubMed  Google Scholar 

  59. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hodi, F. S. et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 17, 1558–1568 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Gettinger, S. N. et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J. Clin. Oncol. 33, 2004–2012 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    Article  PubMed  Google Scholar 

  64. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    Article  PubMed  CAS  Google Scholar 

  65. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    Article  PubMed  CAS  Google Scholar 

  66. Yearley, J. H. et al. PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin. Cancer Res. 23, 3158–3167 (2017).

    Article  PubMed  CAS  Google Scholar 

  67. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  PubMed  CAS  Google Scholar 

  68. Kwon, E. D. et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc. Natl Acad. Sci. USA 94, 8099–8103 (1997).

    Article  PubMed  CAS  Google Scholar 

  69. Shrikant, P., Khoruts, A. & Mescher, M. F. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity 11, 483–493 (1999).

    Article  PubMed  CAS  Google Scholar 

  70. Quezada, S. A. et al. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 207, 637–650 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Perazella, M. & Shirali, A. Nephrotoxicity of cancer immunotherapies: past, present and future. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.2018050488 (2018).

  72. Izzedine, H. et al. Renal effects of immune checkpoint inhibitors. Nephrol. Dial. Transplant. 32, 936–942 (2017).

    Article  PubMed  Google Scholar 

  73. Cortazar, F. B. et al. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int. 90, 638–647 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Shirali, A. C., Perazella, M. A. & Gettinger, S. Association of acute interstitial nephritis with programmed cell death 1 inhibitor therapy in lung cancer patients. Am. J. Kidney Dis. 68, 287–291 (2016).

    Article  PubMed  CAS  Google Scholar 

  75. Izzedine, H. et al. Kidney injuries related to ipilimumab. Invest. New Drugs 32, 769–773 (2014).

    Article  PubMed  CAS  Google Scholar 

  76. Fadel, F., El Karoui, K. & Knebelmann, B. Anti-CTLA4 antibody-induced lupus nephritis. N. Engl. J. Med. 361, 211–212 (2009).

    Article  PubMed  CAS  Google Scholar 

  77. Kidd, J. M. & Gizaw, A. B. Ipilimumab-associated minimal-change disease. Kidney Int. 89, 720 (2016).

    Article  PubMed  Google Scholar 

  78. Kitchlu, A. et al. Nephrotic syndrome with cancer immunotherapies: a report of 2 cases. Am. J. Kidney Dis. 70, 581–585 (2017).

    Article  PubMed  Google Scholar 

  79. Ray, A., Ghosh, S., Ghosh, M. & Yarlagadda, S. Nivolumab induced renal failure with collapsing focal segmental glomerulosclerosis (FSGS). J. Am. Soc. Nephrol. 27, 1010A (2016).

    Google Scholar 

  80. Lin, J., Schiff, M., Salvatore, S., Shoustari, A. & Glezerman, I. Membranous nephropathy related to the checkpoint inhibitor nivolumab. J. Am. Soc. Nephrol. 27, 102A (2016).

    Google Scholar 

  81. Murakami, N., Borges, T. J., Yamashita, M. & Riella, L. V. Severe acute interstitial nephritis after combination immune-checkpoint inhibitor therapy for metastatic melanoma. Clin. Kidney J. 9, 411–417 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Daanen, R. A. et al. Nivolumab-associated nephrotic syndrome in a patient with renal cell carcinoma: a case report. J. Immunother. 40, 345–348 (2017).

    Article  PubMed  CAS  Google Scholar 

  83. Nolan, E. et al. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci. Transl Med. 9, eaal4922 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Tarrio, M. L., Grabie, N., Bu, D. X., Sharpe, A. H. & Lichtman, A. H. PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. J. Immunol. 188, 4876–4884 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Lucas, J. A. et al. Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in MRL mice. J. Immunol. 181, 2513–2521 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Grabie, N. et al. Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+ T cell mediated injury in the heart. Circulation 116, 2062–2071 (2007).

    Article  PubMed  CAS  Google Scholar 

  87. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Eggermont, A. M. et al. Prolonged survival in stage iii melanoma with ipilimumab adjuvant therapy. N. Engl. J. Med. 375, 1845–1855 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Moslehi, J. J., Salem, J.-E., Sosman, J. A., Lebrun-Vignes, B. & Johnson, D. B. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 391, 933 (2018).

    Article  PubMed  Google Scholar 

  91. Mahmood, S. S. et al. Myocarditis in patients treated with immune checkpoint inhibitors. J. Am. Coll. Cardiol. 71, 1755–1764 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Gibson, R., Delaune, J., Szady, A. & Markham, M. Suspected autoimmune myocarditis and cardiac conduction abnormalities with nivolumab therapy for non-small cell lung cancer. BMJ Case Rep. https://doi.org/10.1136/bcr-2016-216228 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yun, S., Vincelette, N. D., Mansour, I., Hariri, D. & Motamed, S. Late onset ipilimumab-induced pericarditis and pericardial effusion: a rare but life threatening complication. Case Rep. Oncol. Med. 2015, 794842 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. Dasanu, C. A., Jen, T. & Skulski, R. Late-onset pericardial tamponade, bilateral pleural effusions and recurrent immune monoarthritis induced by ipilimumab use for metastatic melanoma. J. Oncol. Pharm. Pract. 23, 231–234 (2017).

    Article  PubMed  Google Scholar 

  95. Geisler, B. P., Raad, R. A., Esaian, D., Sharon, E. & Schwartz, D. R. Apical ballooning and cardiomyopathy in a melanoma patient treated with ipilimumab: a case of takotsubo-like syndrome. J. Immunother. Cancer 3, 4 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Heinzerling, L. et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J. Immunother. Cancer 4, 50 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Norwood, T. G. et al. Smoldering myocarditis following immune checkpoint blockade. J. Immunother. Cancer 5, 91 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Loffler, A. I. & Salerno, M. Cardiac MRI for the evaluation of oncologic cardiotoxicity. J. Nucl. Cardiol. https://doi.org/10.1007/s12350-018-1293-9 (2018).

    Article  PubMed  Google Scholar 

  99. Friedrich, M. G. et al. Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J. Am. Coll. Cardiol. 53, 1475–1487 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wang, D. Y., Okoye, G. D., Neilan, T. G., Johnson, D. B. & Moslehi, J. J. Cardiovascular toxicities associated with cancer immunotherapies. Curr. Cardiol. Rep. 19, 21 (2017).

    Article  PubMed  Google Scholar 

  101. Khoja, L., Day, D., Wei-Wu Chen, T., Siu, L. L. & Hansen, A. R. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann. Oncol. 28, 2377–2385 (2017).

    Article  PubMed  CAS  Google Scholar 

  102. Iwama, S. et al. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl Med. 6, 230ra45 (2014).

    Article  PubMed  CAS  Google Scholar 

  103. Caturegli, P. et al. Hypophysitis secondary to cytotoxic T-lymphocyte-associated protein 4 blockade: insights into pathogenesis from an autopsy series. Am. J. Pathol. 186, 3225–3235 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Ding, H., Wu, X. & Gao, W. PD-L1 is expressed by human renal tubular epithelial cells and suppresses T cell cytokine synthesis. Clin. Immunol. 115, 184–191 (2005).

    Article  PubMed  CAS  Google Scholar 

  105. Spanou, Z. et al. Involvement of drug-specific T cells in acute drug-induced interstitial nephritis. J. Am. Soc. Nephrol. 17, 2919–2927 (2006).

    Article  PubMed  CAS  Google Scholar 

  106. Tarhini, A. A. et al. Baseline circulating IL-17 predicts toxicity while TGF-beta1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J. Immunother. Cancer 3, 39 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Abraham, C. & Cho, J. Interleukin-23/Th17 pathways and inflammatory bowel disease. Inflamm. Bowel Dis. 15, 1090–1100 (2009).

    Article  PubMed  Google Scholar 

  108. Krebs, C. F. et al. T helper type 17 cells in immune-mediated glomerular disease. Nat. Rev. Nephrol. 13, 647–659 (2017).

    Article  PubMed  CAS  Google Scholar 

  109. Osorio, J. C. et al. Antibody-mediated thyroid dysfunction during T cell checkpoint blockade in patients with non-small-cell lung cancer. Ann. Oncol. 28, 583–589 (2017).

    PubMed  CAS  Google Scholar 

  110. Shi, H. et al. Elevated serum autoantibodies against co-inhibitory PD-1 facilitate T cell proliferation and correlate with disease activity in new-onset systemic lupus erythematosus patients. Arthritis Res. Ther. 19, 52 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Das, R. et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J. Clin. Invest. 128, 715–720 (2018).

    Article  PubMed  Google Scholar 

  112. Belliere, J. et al. Acute interstitial nephritis related to immune checkpoint inhibitors. Br. J. Cancer 115, 1457–1461 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Jung, K., Zeng, X. & Bilusic, M. Nivolumab-associated acute glomerulonephritis: a case report and literature review. BMC Nephrol. 17, 188 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Forde, P. M., Rock, K., Wilson, G. & O’Byrne, K. J. Ipilimumab-induced immune-related renal failure — a case report. Anticancer Res. 32, 4607–4608 (2012).

    PubMed  Google Scholar 

  115. Bottlaender, L. et al. Acute interstitial nephritis after sequential ipilumumab — nivolumab therapy of metastatic melanoma. J. Immunother. Cancer 5, 57 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Escandon, J. et al. Interstitial nephritis in melanoma patients secondary to PD-1 checkpoint inhibitor. J. Immunother. Cancer 5, 3 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Thajudeen, B., Madhrira, M., Bracamonte, E. & Cranmer, L. D. Ipilimumab granulomatous interstitial nephritis. Am. J. Ther. 22, e84–e87 (2015).

    Article  PubMed  Google Scholar 

  118. Laubli, H. et al. Acute heart failure due to autoimmune myocarditis under pembrolizumab treatment for metastatic melanoma. J. Immunother. Cancer 3, 11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Reviewer information

Nature Reviews Nephrology thanks I. Glezerman, D. Leaf and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed to writing the review and editing the manuscript before submission.

Corresponding author

Correspondence to Anushree C. Shirali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

T helper 1 (TH1) cells

Differentiated population of T cells that provide antibacterial and antiviral immunity. They are characterized by expression of the transcription factors signal transducer and activator of transcription 4 (STAT4)–T-box transcription factor TBX21 (also known as TBET) and production of IFNγ, IL-2 and tumour necrosis factor (TNF).

TH2 cells

Differentiated population of T cells that provide antiparasitic immunity and tissue repair and mediate allergic diseases such as asthma. They are characterized by expression of the transcription factors signal transducer and activator of transcription 6 (STAT6)–trans-acting T cell-specific transcription factor GATA3 and by the production of IL-4, IL-5, IL-9, IL-10, IL-13 and IL-25.

Regulatory T (Treg) cells

Specialized subset of T lymphocytes characterized by the expression of CD4 and CD25 as well as the transcription factor forkhead box protein P3. These cells suppress the activation, proliferation and cytokine production of CD4+ and CD8+ T cells via cytokines such as IL-10 and transforming growth factor-β (TGFβ).

Langerhans cells

DCs found specifically in the epidermis.

Microclusters

Complex structure of the T cell receptor and antigen-presenting cell with major histocompatibility complex-bound antigen along with co-stimulatory and signalling molecules. This structure is thought to promote T cell activation by providing sustained signalling.

Tumour-draining DCs

Dendritic cells (DCs) found in the draining lymph nodes of tumours. These DCs can process tumour antigen and subsequently activate T cells that are specific for these antigens.

Acute interstitial nephritis

(AIN). The pathologic description given to the influx of mononuclear immune cells including lymphocytes, macrophages and eosinophils into the interstitium and peritubular regions of the kidney. Clinically, AIN results in acute kidney injury and can result from an inflammatory reaction to drugs or to infections including viruses and bacteria.

Granuloma

Aggregate of histiocytes, lymphocytes, plasma cells and eosinophils that form in tissues including the kidney in response to viral infection or autoimmune disease.

Hypophysitis

Inflammation of the pituitary gland.

Sterile pyuria

Appearance of white blood cells in the urine without growth of microorganisms in urine culture to suggest an infectious aetiology.

White blood cell casts

Microscopic cylindrical structures formed by the accumulation of white blood cells and protein within the lumen of kidney tubules. These casts can slough off into urine and may be detected on microscopy of urine sediment.

Bland urine sediment

Absence of cells or cellular casts in the urine.

Ileitis

Inflammation of the ileum, the terminal component of the small intestine, due to drugs, infection or autoimmune disease.

Sialadenitis

Inflammation of the salivary glands.

Iritis

Form of anterior uveitis characterized by inflammation of the iris, the middle part of the uvea, which surrounds the pupil.

Pyuria

Presence of white blood cells in urine.

Myocarditis

Inflammation of the myocardium due to infection, drug reaction or ischaemia.

Myositis

Inflammation of muscle due to infection, injury or drugs.

Troponin I

Inhibitory subunit of the myocardial troponin complex that is released from the myocardium following myocardial infarction or other injury. Troponin I serves as a specific biomarker for cardiac injury.

P–R interval

Time period between atrial repolarization and ventricular repolarization, measured on an electrocardiogram between the beginning of the P wave until the beginning of the QRS complex.

ST-segment depression

Electrocardiogram pattern seen in myocardial ischaemia that represents a defect in ventricular depolarization and repolarization. It is characterized by a down-sloping segment instead of the usual flat line between the S and T waves.

Right bundle branch block

Pattern on electrocardiogram characterized by delayed depolarization of the right ventricle, resulting in aberrant waves such as a widened QRS complex and terminal R wave in lead V1. Right bundle branch block may indicate the presence of underlying cardiac ischaemia.

Creatine kinase-muscle/brain

(CK-MB). Isozyme of creatine kinase that is abundantly found in the heart and to a lesser degree in skeletal muscle. Similar to troponin I, CK-MB is released into the systemic circulation within hours of myocardial injury but decreases to normal levels within 24–48 hours.

Hypokinesis

Decreased wall motion on transthoracic electrocardiogram reflecting weakened myocardial muscle.

Akinesis

Failure of the ventricles of the heart to fully contract, which is seen as localized or global lack of wall motion on transthoracic electrocardiogram.

T1-weighted

Type of MRI in which only longitudinal movement of protons is measured. Images are characterized by fat appearing white, which is ideal for anatomical analysis.

T2-weighted

Type of MRI in which only transverse movement of protons is measured. Images are characterized by fat and water appearing white, which detects pathology such as infection or tumour.

Type II hypersensitivity

Immune reaction caused by antigen–antibody complexes that activate the complement system and cause cell lysis.

Type IV hypersensitivity

Immune reaction caused by activation of antigen-specific T cells by dendritic cells. The effector function of these cells includes direct cytotoxicity or cytokine release, which mediates cell or tissue injury.

Drug-specific T cells

T cells that become activated when they recognize a specific peptide in drugs, either directly or via cross reactivity. These T cells can circulate and infiltrate various tissues, causing inflammatory injury.

Drug-specific lymphocyte proliferation tests

Also known as the lymphocyte tolerance test; an in vitro assay that examines T cell proliferation and/or cytokine release in response to stimulation with specific drugs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sury, K., Perazella, M.A. & Shirali, A.C. Cardiorenal complications of immune checkpoint inhibitors. Nat Rev Nephrol 14, 571–588 (2018). https://doi.org/10.1038/s41581-018-0035-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-018-0035-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research