Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications

Abstract

Acute kidney injury (AKI) is a major public health concern associated with high morbidity and mortality. Despite decades of research, the pathogenesis of AKI remains incompletely understood and effective therapies are lacking. An increasing body of evidence suggests a role for epigenetic regulation in the process of AKI and kidney repair, involving remarkable changes in histone modifications, DNA methylation and the expression of various non-coding RNAs. For instance, increases in levels of histone acetylation seem to protect kidneys from AKI and promote kidney repair. AKI is also associated with changes in genome-wide and gene-specific DNA methylation; however, the role and regulation of DNA methylation in kidney injury and repair remains largely elusive. MicroRNAs have been studied quite extensively in AKI, and a plethora of specific microRNAs have been implicated in the pathogenesis of AKI. Emerging research suggests potential for microRNAs as novel diagnostic biomarkers of AKI. Further investigation into these epigenetic mechanisms will not only generate novel insights into the mechanisms of AKI and kidney repair but also might lead to new strategies for the diagnosis and therapy of this disease.

Key points

  • Acute kidney injury (AKI) and subsequent kidney repair are associated with substantial epigenetic changes that have important roles in the pathogenesis and outcome of AKI.

  • An overall increase in histone acetylation (for example, with the use of histone deacetylase inhibitors) might attenuate AKI and promote kidney repair, but the enzymes and downstream genes that mediate these effects remain elusive.

  • DNA methylation might also affect AKI and kidney repair via modulation of downstream genes, but the nature of this regulation remains largely unknown.

  • MicroRNAs are important factors in the regulation of AKI and kidney repair, but they can be pathogenic or protective depending on the specific microRNA species.

  • Additional research into the epigenetic mechanisms underlying AKI may lead to the discovery of novel biomarkers and therapies for AKI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiology of AKI and repair.
Fig. 2: Mechanisms and consequences of histone modifications.
Fig. 3: Mechanisms of DNA methylation and demethylation.
Fig. 4: Mechanisms of gene regulation by non-coding RNAs.

Similar content being viewed by others

References

  1. Lameire, N. H. et al. Acute kidney injury: an increasing global concern. Lancet 382, 170–179 (2013).

    Article  PubMed  Google Scholar 

  2. Mehta, R. L. et al. Recognition and management of acute kidney injury in the International Society of Nephrology 0by25 Global Snapshot: a multinational cross-sectional study. Lancet 387, 2017–2025 (2016).

    Article  PubMed  Google Scholar 

  3. Mehta, R. L. et al. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 385, 2616–2643 (2015).

    Article  PubMed  Google Scholar 

  4. Linkermann, A. et al. Regulated cell death in AKI. J. Am. Soc. Nephrol. 25, 2689–2701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Agarwal, A. et al. Cellular and molecular mechanisms of AKI. J. Am. Soc. Nephrol. 27, 1288–1299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zuk, A. & Bonventre, J. V. Acute kidney injury. Annu. Rev. Med. 67, 293–307 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Venkatachalam, M. A., Weinberg, J. M., Kriz, W. & Bidani, A. K. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J. Am. Soc. Nephrol. 26, 1765–1776 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He, L. et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int. 92, 1071–1083 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chawla, L. S., Eggers, P. W., Star, R. A. & Kimmel, P. L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371, 58–66 (2014).

    Article  PubMed  CAS  Google Scholar 

  10. Ferenbach, D. A. & Bonventre, J. V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 11, 264–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wing, M. R., Ramezani, A., Gill, H. S., Devaney, J. M. & Raj, D. S. Epigenetics of progression of chronic kidney disease: fact or fantasy? Semin. Nephrol. 33, 363–374 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Wanner, N. & Bechtel-Walz, W. Epigenetics of kidney disease. Cell Tissue Res. 369, 75–92 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tampe, B. et al. Induction of Tet3-dependent epigenetic remodeling by low-dose hydralazine attenuates progression of chronic kidney disease. EBioMedicine 2, 19–36 (2015).

    Article  PubMed  Google Scholar 

  15. Tampe, B. et al. Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J. Am. Soc. Nephrol. 25, 905–912 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yin, S. et al. TGFβ-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis. Biochim. Biophys. Acta 1864, 1207–1216 (2017).

    Article  CAS  Google Scholar 

  17. Xu, X. et al. High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis. Nat. Commun. 9, 3509 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kimura, H. Histone modifications for human epigenome analysis. J. Hum. Genet. 58, 439–445 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, R., Kang, R., Fan, X. G. & Tang, D. Release and activity of histone in diseases. Cell Death Dis. 5, e1370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhaumik, S. R., Smith, E. & Shilatifard, A. Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008–1016 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Graff, J. & Tsai, L. H. Histone acetylation: molecular mnemonics on the chromatin. Nat. Rev. Neurosci. 14, 97–111 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sims, R. J. III, Nishioka, K. & Reinberg, D. Histone lysine methylation: a signature for chromatin function. Trends Genet. 19, 629–639 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Kooistra, S. M. & Helin, K. Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell Biol. 13, 297–311 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Rossetto, D., Avvakumov, N. & Cote, J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics 7, 1098–1108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Y., Griffin, K., Mondal, N. & Parvin, J. D. Phosphorylation of histone H2A inhibits transcription on chromatin templates. J. Biol. Chem. 279, 21866–21872 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Wendt, K. D. & Shilatifard, A. Packing for the germy: the role of histone H4 Ser1 phosphorylation in chromatin compaction and germ cell development. Genes Dev. 20, 2487–2491 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Marumo, T., Hishikawa, K., Yoshikawa, M. & Fujita, T. Epigenetic regulation of BMP7 in the regenerative response to ischemia. J. Am. Soc. Nephrol. 19, 1311–1320 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zager, R. A., Johnson, A. C. & Becker, K. Acute unilateral ischemic renal injury induces progressive renal inflammation, lipid accumulation, histone modification, and “end-stage” kidney disease. Am. J. Physiol. Renal Physiol. 301, F1334–F1345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Havasi, A. et al. Histone acetyl transferase (HAT) HBO1 and JADE1 in epithelial cell regeneration. Am. J. Pathol. 182, 152–162 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Naito, M., Bomsztyk, K. & Zager, R. A. Renal ischemia-induced cholesterol loading: transcription factor recruitment and chromatin remodeling along the HMG CoA reductase gene. Am. J. Pathol. 174, 54–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson, A. C., Ware, L. B., Himmelfarb, J. & Zager, R. A. HMG-CoA reductase activation and urinary pellet cholesterol elevations in acute kidney injury. Clin. J. Am. Soc. Nephrol. 6, 2108–2113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, H. F., Cheng, C. F., Liao, W. J., Lin, H. & Yang, R. B. ATF3-mediated epigenetic regulation protects against acute kidney injury. J. Am. Soc. Nephrol. 21, 1003–1013 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, J. I., Jung, K. J., Jang, H. S. & Park, K. M. Gender-specific role of HDAC11 in kidney ischemia- and reperfusion-induced PAI-1 expression and injury. Am. J. Physiol. Renal Physiol. 305, F61–F70 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Hsing, C. H. et al. α2-Adrenoceptor agonist dexmedetomidine protects septic acute kidney injury through increasing BMP-7 and inhibiting HDAC2 and HDAC5. Am. J. Physiol. Renal Physiol. 303, F1443–F1453 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, J. et al. Histone acetyltransferase PCAF regulates inflammatory molecules in the development of renal injury. Epigenetics 10, 62–72 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Portilla, D. et al. Alterations of PPARα and its coactivator PGC-1 in cisplatin-induced acute renal failure. Kidney Int. 62, 1208–1218 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Tran, M. et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Invest. 121, 4003–4014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stallons, L. J., Whitaker, R. M. & Schnellmann, R. G. Suppressed mitochondrial biogenesis in folic acid-induced acute kidney injury and early fibrosis. Toxicol. Lett. 224, 326–332 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Ruiz-Andres, O. et al. The inflammatory cytokine TWEAK decreases PGC-1α expression and mitochondrial function in acute kidney injury. Kidney Int. 89, 399–410 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Moreno, J. A. et al. The inflammatory cytokines TWEAK and TNFalpha reduce renal klotho expression through NFκB. J. Am. Soc. Nephrol. 22, 1315–1325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sakao, Y. et al. Cisplatin induces Sirt1 in association with histone deacetylation and increased Werner syndrome protein in the kidney. Clin. Exp. Nephrol. 15, 363–372 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Hasegawa, K. et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J. Biol. Chem. 285, 13045–13056 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He, W. et al. Sirt1 activation protects the mouse renal medulla from oxidative injury. J. Clin. Invest. 120, 1056–1068 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dong, G. et al. Induction of apoptosis in renal tubular cells by histone deacetylase inhibitors, a family of anticancer agents. J. Pharmacol. Exp. Ther. 325, 978–984 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Arany, I., Herbert, J., Herbert, Z. & Safirstein, R. L. Restoration of CREB function ameliorates cisplatin cytotoxicity in renal tubular cells. Am. J. Physiol. Renal Physiol. 294, F577–F581 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Dong, G., Luo, J., Kumar, V. & Dong, Z. Inhibitors of histone deacetylases suppress cisplatin-induced p53 activation and apoptosis in renal tubular cells. Am. J. Physiol. Renal Physiol. 298, F293–F300 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Ranganathan, P. et al. Histone deacetylase-mediated silencing of AMWAP expression contributes to cisplatin nephrotoxicity. Kidney Int. 89, 317–326 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, J. et al. Histone deacetylase inhibitors protect against cisplatin-induced acute kidney injury by activating autophagy in proximal tubular cells. Cell Death Dis. 9, 322 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yang, Y. et al. Renoprotective approaches and strategies in acute kidney injury. Pharmacol. Ther. 163, 58–73 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Havasi, A. & Dong, Z. Autophagy and tubular cell death in the kidney. Semin. Nephrol. 36, 174–188 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pang, M. et al. Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. Am. J. Physiol. Renal Physiol. 297, F996–F1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Levine, M. H. et al. Class-specific histone/protein deacetylase inhibition protects against renal ischemia reperfusion injury and fibrosis formation. Am. J. Transplant. 15, 965–973 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zacharias, N. et al. Histone deacetylase inhibitors prevent apoptosis following lethal hemorrhagic shock in rodent kidney cells. Resuscitation 82, 105–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Van Beneden, K. et al. Valproic acid attenuates proteinuria and kidney injury. J. Am. Soc. Nephrol. 22, 1863–1875 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Costalonga, E. C., Silva, F. M. & Noronha, I. L. Valproic acid prevents renal dysfunction and inflammation in the ischemia-reperfusion injury model. Biomed. Res. Int. 2016, 5985903 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tang, J. et al. Class I HDAC activity is required for renal protection and regeneration after acute kidney injury. Am. J. Physiol. Renal Physiol. 307, F303–F316 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cianciolo Cosentino, C. et al. Histone deacetylase inhibitor enhances recovery after AKI. J. Am. Soc. Nephrol. 24, 943–953 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Novitskaya, T. et al. A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury. Am. J. Physiol. Renal Physiol. 306, F496–F504 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Shi, Y. et al. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 312, F502–F515 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tang, J. et al. Blockade of histone deacetylase 6 protects against cisplatin-induced acute kidney injury. Clin. Sci. (Lond.) 132, 339–359 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Do Amaral, C. L. et al. Resveratrol attenuates cisplatin-induced nephrotoxicity in rats. Arch. Toxicol. 82, 363–370 (2008).

    Article  PubMed  CAS  Google Scholar 

  64. Xu, S. et al. SIRT1/3 activation by resveratrol attenuates acute kidney injury in a septic rat model. Oxid. Med. Cell Longev. 2016, 7296092 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. Fan, H. et al. The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney Int. 83, 404–413 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Kuhad, A., Pilkhwal, S., Sharma, S., Tirkey, N. & Chopra, K. Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity. J. Agr. Food Chem. 55, 10150–10155 (2007).

    Article  CAS  Google Scholar 

  67. Bayrak, O. et al. Curcumin protects against ischemia/reperfusion injury in rat kidneys. World J. Urol. 26, 285–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Memis, D. et al. Curcumin attenuates the organ dysfunction caused by endotoxemia in the rat. Nutrition 24, 1133–1138 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Glozak, M. A., Sengupta, N., Zhang, X. & Seto, E. Acetylation and deacetylation of non-histone proteins. Gene 363, 15–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Naito, M., Bomsztyk, K. & Zager, R. A. Endotoxin mediates recruitment of RNA polymerase II to target genes in acute renal failure. J. Am. Soc. Nephrol. 19, 1321–1330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Munshi, R. et al. MCP-1 gene activation marks acute kidney injury. J. Am. Soc. Nephrol. 22, 165–175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhou, X. et al. Enhancer of zeste homolog 2 inhibition attenuates renal fibrosis by maintaining Smad7 and phosphatase and tensin homolog expression. J. Am. Soc. Nephrol. 27, 2092–2108 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Zhou, X. et al. Targeting histone methyltransferase enhancer of zeste homolog-2 inhibits renal epithelial-mesenchymal transition and attenuates renal fibrosis. FASEB J. 32, fj201800237R (2018).

  74. Mimura, I. et al. Genome-wide analysis revealed that DZNep reduces tubulointerstitial fibrosis via down-regulation of pro-fibrotic genes. Sci. Rep. 8, 3779 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Tikoo, K., Lau, S. S. & Monks, T. J. Histone H3 phosphorylation is coupled to poly-(ADP-ribosylation) during reactive oxygen species-induced cell death in renal proximal tubular epithelial cells. Mol. Pharmacol. 60, 394–402 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Pabla, N., Huang, S., Mi, Q. S., Daniel, R. & Dong, Z. ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J. Biol. Chem. 283, 6572–6583 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Ma, Z., Wei, Q., Dong, G., Huo, Y. & Dong, Z. DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells. Biochim. Biophys. Acta 1842, 1088–1096 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Scholpa, N. E., Zhang, X., Kolli, R. T. & Cummings, B. S. Epigenetic changes in p21 expression in renal cells after exposure to bromate. Toxicol. Sci. 141, 432–440 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhu, S., Pabla, N., Tang, C., He, L. & Dong, Z. DNA damage response in cisplatin-induced nephrotoxicity. Arch. Toxicol. 89, 2197–2205 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sabari, B. R. et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol. Cell 58, 203–215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ruiz-Andres, O. et al. Histone lysine crotonylation during acute kidney injury in mice. Dis. Model. Mech. 9, 633–645 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mar, D. et al. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes. Kidney Int. 88, 734–744 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schubeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Jeltsch, A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem 3, 274–293 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Ramsahoye, B. H. et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl Acad. Sci. USA 97, 5237–5242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shirane, K. et al. Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLOS Genet. 9, e1003439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guo, J. U. et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci. 17, 215–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Xie, W. et al. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 148, 816–831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Messerschmidt, D. M., Knowles, B. B. & Solter, D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 28, 812–828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 28, 1057–1068 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Li, E. & Zhang, Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 6, a019133 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Rodriguez, J. et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res. 66, 8462–8468 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Song, F. et al. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc. Natl Acad. Sci. USA 102, 3336–3341 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 19, 219–220 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Gowher, H., Liebert, K., Hermann, A., Xu, G. & Jeltsch, A. Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J. Biol. Chem. 280, 13341–13348 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Goll, M. G. et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395–398 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Schaefer, M. et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 24, 1590–1595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Bogdanovic, O. & Veenstra, G. J. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118, 549–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Ng, H. H. et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat. Genet. 23, 58–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Filion, G. J. et al. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol. Cell. Biol. 26, 169–181 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu, S. C. & Zhang, Y. Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 11, 607–620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ramiro, A. R. & Barreto, V. M. Activation-induced cytidine deaminase and active cytidine demethylation. Trends Biochem. Sci. 40, 172–181 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341–356 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guo, J. U., Su, Y., Zhong, C., Ming, G. L. & Song, H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dawlaty, M. M. et al. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9, 166–175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ko, M. et al. Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl Acad. Sci. USA 108, 14566–14571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dawlaty, M. M. et al. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev. Cell 24, 310–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gu, T. P. et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Smyth, L. J., McKay, G. J., Maxwell, A. P. & McKnight, A. J. DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease. Epigenetics 9, 366–376 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Wing, M. R. et al. DNA methylation profile associated with rapid decline in kidney function: findings from the CRIC study. Nephrol. Dial. Transplant. 29, 864–872 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ko, Y. A. et al. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol. 14, R108 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Marumo, T. et al. Diabetes induces aberrant DNA methylation in the proximal tubules of the kidney. J. Am. Soc. Nephrol. 26, 2388–2397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Brennan, E. P. et al. DNA methylation profiling in cell models of diabetic nephropathy. Epigenetics 5, 396–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Pratt, J. R. et al. Ischemic epigenetics and the transplanted kidney. Transplant. Proc. 38, 3344–3346 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Parker, M. D., Chambers, P. A., Lodge, J. P. & Pratt, J. R. Ischemia- reperfusion injury and its influence on the epigenetic modification of the donor kidney genome. Transplantation 86, 1818–1823 (2008).

    Article  PubMed  Google Scholar 

  123. Endo, K., Kito, N., Fukushima, Y., Weng, H. & Iwai, N. A novel biomarker for acute kidney injury using TaqMan-based unmethylated DNA-specific polymerase chain reaction. Biomed. Res. 35, 207–213 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Kang, S. W. et al. Renal kallikrein excretion and epigenetics in human acute kidney injury: expression, mechanisms and consequences. BMC Nephrol. 12, 27 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Mehta, T. K. et al. Quantitative detection of promoter hypermethylation as a biomarker of acute kidney injury during transplantation. Transplant. Proc. 38, 3420–3426 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Huang, N., Tan, L., Xue, Z., Cang, J. & Wang, H. Reduction of DNA hydroxymethylation in the mouse kidney insulted by ischemia reperfusion. Biochem. Biophys. Res. Commun. 422, 697–702 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Wang, H., Huang, N., Liu, Y., Cang, J. & Xue, Z. Genomic distribution of 5-Hydroxymethylcytosine in mouse kidney and its relationship with gene expression. Ren. Fail. 38, 982–988 (2016).

    Article  PubMed  CAS  Google Scholar 

  128. Zhao, Y. et al. Genome-wide DNA methylation analysis in renal ischemia reperfusion injury. Gene 610, 32–43 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Guo, C. et al. DNA methylation protects against cisplatin-induced kidney injury by regulating specific genes, including interferon regulatory factor 8. Kidney Int. 92, 1194–1205 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Branco, M. R., Ficz, G. & Reik, W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat. Rev. Genet. 13, 7–13 (2011).

    Article  PubMed  CAS  Google Scholar 

  131. Globisch, D. et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLOS ONE 5, e15367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chu, A. Y. et al. Epigenome-wide association studies identify DNA methylation associated with kidney function. Nat. Commun. 8, 1286 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Tampe, B. et al. Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression. Kidney Int. 91, 157–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Hu, M. C. & Moe, O. W. Klotho as a potential biomarker and therapy for acute kidney injury. Nat. Rev. Nephrol. 8, 423–429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mencke, R., Olauson, H. & Hillebrands, J. L. Effects of Klotho on fibrosis and cancer: a renal focus on mechanisms and therapeutic strategies. Adv. Drug Deliv. Rev. 121, 85–100 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Chen, J. et al. Elevated Klotho promoter methylation is associated with severity of chronic kidney disease. PLOS ONE 8, e79856 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang, Q., Yin, S., Liu, L., Liu, Z. & Cao, W. Rhein reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal fibrosis in mice. Sci. Rep. 6, 34597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tirkey, N., Kaur, G., Vij, G. & Chopra, K. Curcumin, a diferuloylmethane, attenuates cyclosporine-induced renal dysfunction and oxidative stress in rat kidneys. BMC Pharmacol. 5, 15 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Zhang, Q. et al. Rhein reverses Klotho repression via promoter demethylation and protects against kidney and bone injuries in mice with chronic kidney disease. Kidney Int. 91, 144–156 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Chua, J. H., Armugam, A. & Jeyaseelan, K. MicroRNAs: biogenesis, function and applications. Curr. Opin. Mol. Ther. 11, 189–199 (2009).

    CAS  PubMed  Google Scholar 

  142. Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Karlsson, O. & Baccarelli, A. A. Environmental health and long non-coding RNAs. Curr. Environ. Health Rep. 3, 178–187 (2016).

    Google Scholar 

  144. Neguembor, M. V., Jothi, M. & Gabellini, D. Long noncoding RNAs, emerging players in muscle differentiation and disease. Skelet. Muscle 4, 8 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Quek, X. C. et al. lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res. 43, D168–D173 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Alvarez-Garcia, I. & Miska, E. A. MicroRNA functions in animal development and human disease. Development 132, 4653–4662 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Flynt, A. S. & Lai, E. C. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat. Rev. Genet. 9, 831–842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bushati, N. & Cohen, S. M. microRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Chang, T. C. & Mendell, J. T. microRNAs in vertebrate physiology and human disease. Annu. Rev. Genomics Hum. Genet. 8, 215–239 (2007).

    Article  CAS  Google Scholar 

  150. Mendell, J. T. & Olson, E. N. MicroRNAs in stress signaling and human disease. Cell 148, 1172–1187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Erson, A. E. & Petty, E. M. MicroRNAs in development and disease. Clin. Genet. 74, 296–306 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Tufekci, K. U., Oner, M. G., Meuwissen, R. L. & Genc, S. The role of microRNAs in human diseases. Methods Mol. Biol. 1107, 33–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Ullah, S., John, P. & Bhatti, A. MicroRNAs with a role in gene regulation and in human diseases. Mol. Biol. Rep. 41, 225–232 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Karolina, D. S., Wintour, E. M., Bertram, J. & Jeyaseelan, K. Riboregulators in kidney development and function. Biochimie 92, 217–225 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Saal, S. & Harvey, S. J. MicroRNAs and the kidney: coming of age. Curr. Opin. Nephrol. Hypertens. 18, 317–323 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Wei, Q., Mi, Q. S. & Dong, Z. The regulation and function of microRNAs in kidney diseases. IUBMB Life 65, 602–614 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bhatt, K., Mi, Q. S. & Dong, Z. microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am. J. Physiol. Renal Physiol. 300, F602–F610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ho, J. & Kreidberg, J. A. The long and short of microRNAs in the kidney. J. Am. Soc. Nephrol. 23, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chandrasekaran, K. et al. Role of microRNAs in kidney homeostasis and disease. Kidney Int. 81, 617–627 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Ho, J. & Kreidberg, J. A. MicroRNAs in renal development. Pediatr. Nephrol. 28, 219–225 (2013).

    Article  PubMed  Google Scholar 

  161. Khalid, U., Bowen, T., Fraser, D. J. & Jenkins, R. H. Acute kidney injury: a paradigm for miRNA regulation of the cell cycle. Biochem. Soc. Trans. 42, 1219–1223 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Aguado-Fraile, E. et al. MicroRNAs in the kidney: novel biomarkers of acute kidney injury. Nefrologia 33, 826–834 (2013).

    PubMed  Google Scholar 

  163. Liu, Z., Wang, S., Mi, Q. S. & Dong, Z. MicroRNAs in pathogenesis of acute kidney injury. Nephron 134, 149–153 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Ma, L. & Qu, L. The function of microRNAs in renal development and pathophysiology. J. Genet. Genomics 40, 143–152 (2013).

    Article  CAS  Google Scholar 

  165. Trionfini, P., Benigni, A. & Remuzzi, G. MicroRNAs in kidney physiology and disease. Nat. Rev. Nephrol. 11, 23–33 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Mukhadi, S., Hull, R., Mbita, Z. & Dlamini, Z. The role of MicroRNAs in kidney disease. Noncoding RNA 1, 192–221 (2015).

    Google Scholar 

  167. Bhatt, K., Kato, M. & Natarajan, R. Mini-review: emerging roles of microRNAs in the pathophysiology of renal diseases. Am. J. Physiol. Renal Physiol. 310, F109–F118 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Wei, Q. et al. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 21, 756–761 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Godwin, J. G. et al. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc. Natl Acad. Sci. USA 107, 14339–14344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Shapiro, M. D. et al. MicroRNA expression data reveals a signature of kidney damage following ischemia reperfusion injury. PLOS ONE 6, e23011 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Pellegrini, K. L. et al. Application of small RNA sequencing to identify microRNAs in acute kidney injury and fibrosis. Toxicol. Appl. Pharmacol. 312, 42–52 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Lorenzen, J. M. et al. MicroRNA-24 antagonism prevents renal ischemia reperfusion injury. J. Am. Soc. Nephrol. 25, 2717–2729 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ranganathan, P. et al. MicroRNA-150 deletion in mice protects kidney from myocardial infarction-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 309, F551–F558 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lan, Y. F. et al. MicroRNA-494 reduces ATF3 expression and promotes AKI. J. Am. Soc. Nephrol. 23, 2012–2023 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bhatt, K. et al. MicroRNA-687 induced by hypoxia-inducible factor-1 targets phosphatase and tensin homolog in renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 26, 1588–1596 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hao, J. et al. Induction of microRNA-17-5p by p53 protects against renal ischemia-reperfusion injury by targeting death receptor 6. Kidney Int. 91, 106–118 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Liang, S., Wang, W. & Gou, X. MicroRNA 26a modulates regulatory T cells expansion and attenuates renal ischemia-reperfusion injury. Mol. Immunol. 65, 321–327 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Bijkerk, R. et al. Hematopoietic microRNA-126 protects against renal ischemia/reperfusion injury by promoting vascular integrity. J. Am. Soc. Nephrol. 25, 1710–1722 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Aguado-Fraile, E. et al. miR-127 protects proximal tubule cells against ischemia/reperfusion: identification of kinesin family member 3B as miR-127 target. PLOS ONE 7, e44305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Dai, Y. et al. miR-146a is essential for lipopolysaccharide (LPS)-induced cross-tolerance against kidney ischemia/reperfusion injury in mice. Sci. Rep. 6, 27091 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Amrouche, L. et al. MicroRNA-146a in human and experimental ischemic AKI: CXCL8-dependent mechanism of action. J. Am. Soc. Nephrol. 28, 479–493 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Muratsu-Ikeda, S. et al. Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells. PLOS ONE 7, e41462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wei, Q. et al. MicroRNA-489 induction by hypoxia-inducible factor-1 protects against ischemic kidney injury. J. Am. Soc. Nephrol. 27, 2784–2796 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Xu, X. et al. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int. 82, 1167–1175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jia, P. et al. miR-21 contributes to xenon-conferred amelioration of renal ischemia-reperfusion injury in mice. Anesthesiology 119, 621–630 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Hu, H., Jiang, W., Xi, X., Zou, C. & Ye, Z. MicroRNA-21 attenuates renal ischemia reperfusion injury via targeting caspase signaling in mice. Am. J. Nephrol. 40, 215–223 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Xu, X. et al. Renal protection mediated by hypoxia inducible factor-1α depends on proangiogenesis function of miR-21 by targeting thrombospondin 1. Transplantation 101, 1811–1819 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Liu, X. et al. MiR-21 inhibits autophagy by targeting Rab11a in renal ischemia/reperfusion. Exp. Cell Res. 338, 64–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  189. El Gazzar, M., Church, A., Liu, T. & McCall, C. E. MicroRNA-146a regulates both transcription silencing and translation disruption of TNF-α during TLR4-induced gene reprogramming. J. Leukoc. Biol. 90, 509–519 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Saba, R., Sorensen, D. L. & Booth, S. A. MicroRNA-146a: a dominant, negative regulator of the innate immune response. Front. Immunol. 5, 578 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Bhatt, K. et al. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol. Med. 16, 409–416 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lee, C. G. et al. Discovery of an integrative network of microRNAs and transcriptomics changes for acute kidney injury. Kidney Int. 86, 943–953 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Joo, M. S., Lee, C. G., Koo, J. H. & Kim, S. G. miR-125b transcriptionally increased by Nrf2 inhibits AhR repressor, which protects kidney from cisplatin-induced injury. Cell Death Dis. 4, e899 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhu, Y. et al. MicroRNA-146b, a sensitive indicator of mesenchymal stem cell repair of acute renal injury. Stem Cells Transl Med. 5, 1406–1415 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Pellegrini, K. L. et al. MicroRNA-155 deficient mice experience heightened kidney toxicity when dosed with cisplatin. Toxicol. Sci. 141, 484–492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Zhu, H. Y. et al. Role of microRNA-181a in the apoptosis of tubular epithelial cell induced by cisplatin. Chin. Med. J. 125, 523–526 (2012).

    CAS  PubMed  Google Scholar 

  197. Qin, W., Xie, W., Yang, X., Xia, N. & Yang, K. Inhibiting microRNA-449 attenuates cisplatin-induced injury in NRK-52E cells possibly via regulating the SIRT1/P53/BAX pathway. Med. Sci. Monit. 22, 818–823 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Hao, J. et al. MicroRNA-375 is induced in cisplatin nephrotoxicity to repress hepatocyte nuclear factor 1-β. J. Biol. Chem. 292, 4571–4582 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Guo, Y. et al. MicroRNA-709 mediates acute tubular injury through effects on mitochondrial function. J. Am. Soc. Nephrol. 29, 449–461 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Jenkins, R. H. et al. miR-192 induces G2/M growth arrest in aristolochic acid nephropathy. Am. J. Pathol. 184, 996–1009 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Weber, J. A. et al. The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733–1741 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Lorenzen, J. M. et al. Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin. J. Am. Soc. Nephrol. 6, 1540–1546 (2011).

    Article  CAS  PubMed  Google Scholar 

  203. Wang, N. et al. Urinary microRNA-10a and microRNA-30d serve as novel, sensitive and specific biomarkers for kidney injury. PLOS ONE 7, e51140 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Saikumar, J. et al. Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol. Sci. 129, 256–267 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Du, J. et al. MicroRNA-21 and risk of severe acute kidney injury and poor outcomes after adult cardiac surgery. PLOS ONE 8, e63390 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ramachandran, K. et al. Human miRNome profiling identifies microRNAs differentially present in the urine after kidney injury. Clin. Chem. 59, 1742–1752 (2013).

    Article  CAS  PubMed  Google Scholar 

  207. Kanki, M. et al. Identification of urinary miRNA biomarkers for detecting cisplatin-induced proximal tubular injury in rats. Toxicology 324, 158–168 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Wang, J. F. et al. Screening plasma miRNAs as biomarkers for renal ischemia-reperfusion injury in rats. Med. Sci. Monit. 20, 283–289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Pavkovic, M., Riefke, B. & Ellinger-Ziegelbauer, H. Urinary microRNA profiling for identification of biomarkers after cisplatin-induced kidney injury. Toxicology 324, 147–157 (2014).

    Article  CAS  PubMed  Google Scholar 

  210. Bellinger, M. A. et al. Concordant changes of plasma and kidney microRNA in the early stages of acute kidney injury: time course in a mouse model of bilateral renal ischemia-reperfusion. PLOS ONE 9, e93297 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Aguado-Fraile, E. et al. A pilot study identifying a set of microRNAs as precise diagnostic biomarkers of acute kidney injury. PLOS ONE 10, e0127175 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Kito, N., Endo, K., Ikesue, M., Weng, H. & Iwai, N. miRNA profiles of tubular cells: diagnosis of kidney injury. Biomed. Res. Int. 2015, 465479 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Tsai, P. C. et al. Serum microRNA-21 and microRNA-221 as potential biomarkers for cerebrovascular disease. J. Vasc. Res. 50, 346–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  214. Szeto, C. C. et al. Micro-RNA expression in the urinary sediment of patients with chronic kidney diseases. Dis. Markers 33, 137–144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Yuan, X. P. et al. MicroRNA-423-5p facilitates hypoxia/reoxygenation-induced apoptosis in renal proximal tubular epithelial cells by targeting GSTM1 via endoplasmic reticulum stress. Oncotarget 8, 82064–82077 (2017).

    PubMed  PubMed Central  Google Scholar 

  216. Dreval, K. et al. miR-1247 blocks SOX9-mediated regeneration in alcohol- and fibrosis-associated acute kidney injury in mice. Toxicology 384, 40–49 (2017).

    Article  CAS  PubMed  Google Scholar 

  217. Lin, J. et al. The long noncoding RNA landscape in hypoxic and inflammatory renal epithelial injury. Am. J. Physiol. Renal Physiol. 309, F901–F913 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Mimura, I. et al. Novel lnc RNA regulated by HIF-1 inhibits apoptotic cell death in the renal tubular epithelial cells under hypoxia. Physiol. Rep. 5, e13203 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Yu, T. M. et al. RANTES mediates kidney ischemia reperfusion injury through a possible role of HIF-1α and LncRNA PRINS. Sci. Rep. 6, 18424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Lelli, A. et al. Induction of long noncoding RNA MALAT1 in hypoxic mice. Hypoxia (Auckl.) 3, 45–52 (2015).

    Google Scholar 

  221. Kolling, M. et al. Hypoxia-induced long non-coding RNA Malat1 is dispensable for renal ischemia/reperfusion-injury. Sci. Rep. 8, 3438 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Geng, X. et al. The effect of long noncoding RNA GAS5 on apoptosis in renal ischemia/reperfusion injury. Nephrology (Carlton) https://doi.org/10.1111/nep.13476 (2018).

  223. Ding, Y. et al. Mechanism of long non-coding RNA MALAT1 in lipopolysaccharide-induced acute kidney injury is mediated by the miR-146a/NF-κB signaling pathway. Int. J. Mol. Med. 41, 446–454 (2018).

    CAS  PubMed  Google Scholar 

  224. Huang, W. et al. Long non-coding RNA PVT1 promote LPS-induced septic acute kidney injury by regulating TNFalpha and JNK/NF-kappaB pathways in HK-2 cells. Int. Immunopharmacol. 47, 134–140 (2017).

    Article  CAS  PubMed  Google Scholar 

  225. Chen, Y. et al. Long non-coding RNA NEAT1 plays an important role in sepsis-induced acute kidney injury by targeting miR-204 and modulating the NF-κB pathway. Int. Immunopharmacol. 59, 252–260 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Yang, R. et al. Inhibition of maternally expressed gene 3 attenuated lipopolysaccharide-induced apoptosis through sponging miR-21 in renal tubular epithelial cells. J. Cell. Biochem. 119, 7800–7806 (2018).

    Article  CAS  PubMed  Google Scholar 

  227. Shen, J., Zhang, J., Jiang, X., Wang, H. & Pan, G. LncRNA HOX transcript antisense RNA accelerated kidney injury induced by urine-derived sepsis through the miR-22/high mobility group Box 1 pathway. Life Sci. 210, 185–191 (2018).

    Article  CAS  PubMed  Google Scholar 

  228. Lorenzen, J. M. et al. Circulating long noncoding RNATapSaki is a predictor of mortality in critically ill patients with acute kidney injury. Clin. Chem. 61, 191–201 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. Arvaniti, E. et al. Whole-transcriptome analysis of UUO mouse model of renal fibrosis reveals new molecular players in kidney diseases. Sci. Rep. 6, 26235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Zhou, Q. et al. Identification of novel long noncoding RNAs associated with TGF-β/Smad3-mediated renal inflammation and fibrosis by RNA sequencing. Am. J. Pathol. 184, 409–417 (2014).

    Article  CAS  PubMed  Google Scholar 

  231. Sun, J., Zhang, S., Shi, B., Zheng, D. & Shi, J. Transcriptome identified lncRNAs associated with renal fibrosis in UUO rat model. Front. Physiol. 8, 658 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Feng, M. et al. TGF-β mediates renal fibrosis via the Smad3-Erbb4-IR long noncoding RNA axis. Mol. Ther. 26, 148–161 (2018).

    Article  CAS  PubMed  Google Scholar 

  233. Fontecha-Barriuso, M. et al. Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol. Dial. Transplant. 33, 1875–1886 (2018).

    Article  PubMed  Google Scholar 

  234. Mellis, D. & Caporali, A. MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem. Soc. Trans. 46, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported in part by grants from the US National Institutes of Health (DK058831 and DK087843) and the US Department of Veterans Affairs (BX000319). Z.D. is a recipient of the Senior Research Career Scientist award from the Department of Veterans Affairs.

Reviewer information

Nature Reviews Nephrology thanks J. Lorenzen, A. B. Sanz, T. Tanaka and S. Zhuang for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.G. and Z.D. researched data for the article and wrote the article. All authors contributed substantially to discussion of the article’s content and reviewed and edited the article before submission.

Corresponding author

Correspondence to Zheng Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Long Noncoding RNA Database v2.0: http://www.lncrnadb.org

miRBase 22: http://www.miRbase.org

Glossary

Epigenetic writers

Specific enzymes that add epigenetic marks on histone proteins or DNA.

Epigenetic readers

Effector proteins that recognize and bind epigenetic marks.

Epigenetic erasers

Specific enzymes that remove the epigenetic marks on histone proteins or DNA.

Core histones

Histones H2A, H2B, H3 and H4, which form the nucleosome core (also known as the histone octamer).

Linker histones

Histones that bind to internucleosomal DNA (also known as linker DNA), facilitating the formation of a compact chromatin structure.

Histone acetylation

Histone modification that involves the addition of an acetyl group to the ε-amine of lysine on all four core histones by histone acetyltransferases.

Histone methylation

Histone modification that involves the addition of a methyl group to a basic amino acid on core histones by histone methyltransferases.

Histone crotonylation

Histone modification that adds a crotonyl group to lysine residues on the core histones by histone crotonyltransferases.

Matrix chromatin immunoprecipitation

High-throughput chromatin immunoprecipitation method in which antibodies are immobilized in a 96-well plate and all the procedures are done on the same plate without sample transfer.

Permissive histone marks

Histone modifications that promote gene transcription.

Elongation marks

Histone modifications that promote transcription elongation.

Repressive histone marks

Histone modifications that inhibit gene transcription.

CpG dinucleotides

Regions of DNA in which a cytosine nucleotide is followed by a guanine nucleotide, connected by a phosphodiester bond.

CpG islands

Regions of DNA >200 base pairs in length that have a CG content >50% and observed CpG (number of CpGs observed in a window):expected CpG (number of Cs × number of Gs/window length) ratio ≥0.6.

Genomic integrity

Integrity of the genome or genome stability.

X chromosome inactivation

Process that inactivates one of the two X chromosomes in female mammals.

Genomic imprinting

Biological process that epigenetically marks a gene, leading to gene expression in a parent-of-origin manner.

Hemimethylated DNA

DNA that has one strand methylated and another unmethylated.

tRNAs

Class of small RNA that carries a particular amino acid to the ribosome on the basis of the mRNA nucleotide sequences.

DNA hydroxymethylome profiling

Genome-wide analysis of DNA hydroxymethylation.

Hyper-hydroxymethylation

Increased DNA hydroxymethylation.

Reduced representation bisulfite sequencing

(RRBS). Genome-wide DNA methylation analysis method based on bisulfite sequencing that involves sequencing of a reduced, representative sample of the whole genome.

Small interfering RNAs

Class of small non-coding RNAs that bind to complementary mRNAs, leading to mRNA degradation and inhibition of protein translation.

Circulating non-coding RNAs

Non-coding RNAs that are present in the body fluid.

Dicer

Double-stranded RNA endoribonuclease that cleaves long or hairpin double-stranded RNA into small interfering RNA or precursor microRNA into microRNA.

Chromatin immunoprecipitation (ChIP) sequencing

Method combining chromatin immunoprecipitation and next-generation sequencing that analyses the genome-wide DNA binding sites for transcription factors or other chromatin-associated proteins.

Inspiratory hypoxia

Hypoxia condition that animals are subjected to with a low inspiratory oxygen concentration (such as 8% of oxygen).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Dong, G., Liang, X. et al. Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications. Nat Rev Nephrol 15, 220–239 (2019). https://doi.org/10.1038/s41581-018-0103-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-018-0103-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing