Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuromyelitis optica spectrum disorders and pregnancy: therapeutic considerations

Abstract

Neuromyelitis optica spectrum disorders (NMOSD) are a type of neurological autoimmune disease characterized by attacks of CNS inflammation that are often severe and predominantly affect the spinal cord and optic nerve. The majority of individuals with NMOSD are women, many of whom are of childbearing age. Although NMOSD are rare, several small retrospective studies and case reports have indicated that pregnancy can worsen disease activity and might contribute to disease onset. NMOSD disease activity seems to negatively affect pregnancy outcomes. Moreover, some of the current NMOSD treatments are known to pose risks to the developing fetus and only limited safety data are available for others. Here, we review published studies regarding the relationship between pregnancy outcomes and NMOSD disease activity. We also assess the risks associated with using disease-modifying therapies for NMOSD during the course of pregnancy and breastfeeding. On the basis of the available evidence, we offer recommendations regarding the use of these therapies in the course of pregnancy planning in individuals with NMOSD.

Key points

  • Several studies have shown that women with neuromyelitis optica spectrum disorders (NMOSD) have an increased risk of relapse postpartum; the available data are insufficient to accurately define the relapse risk during pregnancy.

  • Aquaporin 4 (AQP4), which is the main target antigen in NMOSD, is expressed at high levels in the placenta, and women with active NMOSD have a high risk of miscarriage.

  • AQP4 antibodies cross the placenta and are found in the blood of newborn infants without causing symptoms; however, other autoantibodies or comorbid autoimmune conditions can cause symptoms in the newborn infant.

  • Azathioprine, rituximab, eculizumab and glucocorticoids seem to be relatively safe in pregnancy and are the treatments of choice; tocilizumab can be considered in women with very severe NMOSD.

  • Given the risk of obstetric complications and postpartum NMOSD relapse, patients should be informed about the advantages and risks of the use of NMOSD treatments at the time of conception or during pregnancy, and should be monitored in a multidisciplinary manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AQP4 and MOG autoimmunity during pregnancy and NMOSD treatments.

Similar content being viewed by others

References

  1. Jarius, S. & Wildemann, B. AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat. Rev. Neurol. 6, 383–392 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Jarius, S. et al. Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nat. Clin. Pract. Neurol. 4, 202–214 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Jarius, S. & Wildemann, B. The history of neuromyelitis optica. J. Neuroinflammation 10, 8 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. Jarius, S. & Wildemann, B. The history of neuromyelitis optica. Part 2: ‘Spinal amaurosis’, or how it all began. J. Neuroinflammation 16, 280 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lennon, V. A. et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364, 2106–2112 (2004). The publication of this article led to the development of NMO-specific diagnostic criteria.

    Article  CAS  PubMed  Google Scholar 

  6. Wingerchuk, D. M. et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85, 177–189 (2015). The first set of diagnostic consensus criteria that cover both NMO and its formes frustes as well as seropositive and seronegative cases.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Borisow, N. et al. Influence of female sex and fertile age on neuromyelitis optica spectrum disorders. Mult. Scler. 23, 1092–1103 (2017).

    Article  PubMed  Google Scholar 

  8. Pandit, L. et al. Demographic and clinical features of neuromyelitis optica: a review. Mult. Scler. 21, 845–853 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bourre, B. et al. Neuromyelitis optica and pregnancy. Neurology 78, 875–879 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Shimizu, Y. et al. Pregnancy-related relapse risk factors in women with anti-AQP4 antibody positivity and neuromyelitis optica spectrum disorder. Mult. Scler. 22, 1413–1420 (2016). This study showed that the relapse rate in individuals with AQP4-IgG-positive NMOSD increases during the postpartum period and, possibly, also during pregnancy.

    Article  PubMed  Google Scholar 

  11. Huang, Y. et al. Pregnancy in neuromyelitis optica spectrum disorder: a multicenter study from South China. J. Neurol. Sci. 372, 152–156 (2017).

    Article  PubMed  Google Scholar 

  12. Klawiter, E. C. et al. High risk of postpartum relapses in neuromyelitis optica spectrum disorder. Neurology 89, 2238–2244 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tong, Y. et al. Influences of pregnancy on neuromyelitis optica spectrum disorders and multiple sclerosis. Mult. Scler. Relat. Disord. 25, 61–65 (2018).

    Article  PubMed  Google Scholar 

  14. Kim, W. et al. Influence of pregnancy on neuromyelitis optica spectrum disorder. Neurology 78, 1264–1267 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Fragoso, Y. D. et al. Neuromyelitis optica and pregnancy. J. Neurol. 260, 2614–2619 (2013).

    Article  PubMed  Google Scholar 

  16. Nour, M. M. et al. Pregnancy outcomes in aquaporin-4-positive neuromyelitis optica spectrum disorder. Neurology 86, 79–87 (2016). This study found that the risk of miscarriage is increased after onset of NMOSD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saadoun, S. et al. Neuromyelitis optica IgG causes placental inflammation and fetal death. J. Immunol. 191, 2999–3005 (2013). This study showed that AQP4 is expressed at high levels in the healthy placenta.

    Article  CAS  PubMed  Google Scholar 

  18. De Falco, M. et al. Down-regulation of aquaporin 4 in human placenta throughout pregnancy. In Vivo 21, 813–817 (2007).

    PubMed  Google Scholar 

  19. Reuss, R. et al. A woman with acute myelopathy in pregnancy: case outcome. BMJ 339, b4026 (2009).

    Article  PubMed  Google Scholar 

  20. Jarius, S. et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J. Neuroinflammation 9, 14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park-Wyllie, L. et al. Birth defects after maternal exposure to corticosteroids: prospective cohort study and meta-analysis of epidemiological studies. Teratology 62, 385–392 (2000). The results of this study suggest that steroids can be teratogenic when used in the first trimester.

    Article  CAS  PubMed  Google Scholar 

  22. Hoeltzenbein, M. et al. Teratogenicity of mycophenolate confirmed in a prospective study of the European Network of Teratology Information Services. Am. J. Med. Genet. A 158A, 588–596 (2012).

    Article  PubMed  CAS  Google Scholar 

  23. Hyoun, S. C., Običan, S. G. & Scialli, A. R. Teratogen update: methotrexate. Birth Defects Res. A Clin. Mol. Teratol. 94, 187–207 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Frau, J. et al. Mitoxantrone exposure in pregnancy: a new case report in a multiple sclerosis patient. Case Rep. Perinat. Med. 5, 125–126 (2016).

    Article  Google Scholar 

  25. De Santis, M. et al. The first case of mitoxantrone exposure in early pregnancy. Neurotoxicology 28, 696–697 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. Jarius, S. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J. Neuroinflammation 13, 279 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Reindl, M., Di Pauli, F., Rostásy, K. & Berger, T. The spectrum of MOG autoantibody-associated demyelinating diseases. Nat. Rev. Neurol. 9, 455–461 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Juryn´czyk, M. et al. Brain lesion distribution criteria distinguish MS from AQP4-antibody NMOSD and MOG-antibody disease. J. Neurol. Neurosurg. Psychiatry 88, 132–136 (2017).

    Article  PubMed  Google Scholar 

  29. Jarius, S. et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J. Neuroinflammation 15, 134 (2018). This article proposes a set of diagnostic criteria for MOG-IgG disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Trowsdale, J. & Betz, A. G. Mother’s little helpers: mechanisms of maternal-fetal tolerance. Nat. Immunol. 7, 241–246 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Clark, D. A., Chaouat, G., Wong, K., Gorczynski, R. M. & Kinsky, R. Tolerance mechanisms in pregnancy: a reappraisal of the role of class I paternal MHC antigens. Am. J. Reprod. Immunol. 63, 93–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Fu, B. et al. Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human maternal-fetal interface. Proc. Natl Acad. Sci. USA 110, E231–E240 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Tao, Y. et al. CD56brightCD25+ NK cells are preferentially recruited to the maternal/fetal interface in early human pregnancy. Cell. Mol. Immunol. 12, 77–86 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Ohkura, N., Kitagawa, Y. & Sakaguchi, S. Development and maintenance of regulatory T cells. Immunity 38, 414–423 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Lennon, V. A., Kryzer, T. J., Pittock, S. J., Verkman, A. S. & Hinson, S. R. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med. 202, 473–477 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Varrin-Doyer, M. et al. MOG transmembrane and cytoplasmic domains contain highly stimulatory T-cell epitopes in MS. Neurol. Neuroimmunol. Neuroinflamm. 1, e20 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Davoudi, V., Keyhanian, K., Bove, R. M. & Chitnis, T. Immunology of neuromyelitis optica during pregnancy. Neurol. Neuroimmunol. Neuroinflamm. 3, e288 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Reindl, M. & Waters, P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat. Rev. Neurol. 15, 89–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Jarius, S. et al. Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain 131, 3072–3080 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jarius, S. & Wildemann, B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. Brain Pathol. 23, 661–683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jarius, S. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J. Neuroinflammation 13, 280 (2016). This article provides information on MOG-IgG disease activity during pregnancy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Alves Do Rego, C. et al. Disease activity during pregnancy in patients with AQP4-Ab positive, MOG-Ab positive or double negative NMOSD [abstract P984]. Mult. Scler. 24 (Suppl. 2), 541 (2018). This study found that MOG-IgG disease attacks become less frequent during pregnancy but more frequent during the postpartum period.

    Google Scholar 

  43. Asgari, N., Henriksen, T. B., Petersen, T., Lillevang, S. T. & Weinshenker, B. G. Pregnancy outcomes in a woman with neuromyelitis optica. Neurology 83, 1576–1577 (2014).

    Article  PubMed  Google Scholar 

  44. Rubio Tabares, J. & Amaya Gonzalez, P. F. Plasma exchange therapy for a severe relapse of Devic’s disease in a pregnant woman: a case report and concise review. Clin. Neurol. Neurosurg. 148, 88–90 (2016).

    Article  PubMed  Google Scholar 

  45. Igel, C. et al. Neuromyelitis optica in pregnancy complicated by posterior reversible encephalopathy syndrome, eclampsia and fetal death. J. Clin. Med. Res. 7, 193–195 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Delgado-García, G., Chávez, Z., Rivas-Alonso, V., Corona, T. & Flores-Rivera, J. Obstetric outcomes in a Mexican cohort of patients with AQP4-antibody-seropositive neuromyelitis optica. Mult. Scler. Relat. Disord. 25, 268–270 (2018). This study identified an association between AQP4-IgG-positive NMO disease activity and poor pregnancy outcomes.

    Article  PubMed  Google Scholar 

  47. Chang, Y. et al. Study of the placentae of patients with neuromyelitis optica spectrum disorder. J. Neurol. Sci. 387, 119–123 (2018).

    Article  PubMed  Google Scholar 

  48. Chang, Y. et al. Ectrodactyly in a Chinese patient born to a mother with neuromyelitis optica spectrum disorder. Mult. Scler. Relat. Disord. 19, 70–72 (2018).

    Article  PubMed  Google Scholar 

  49. Jakó, M. et al. The pregnancy and postnatal outcome in neuromyelitis optica: case study [abstract P03.03]. Ultrasound Obst. Gyn. 46, 128–129 (2015).

    Article  Google Scholar 

  50. Pellkofer, H. L., Suessmair, C., Schulze, A., Hohlfeld, R. & Kuempfel, T. Course of neuromyelitis optica during inadvertent pregnancy in a patient treated with rituximab. Mult. Scler. 15, 1006–1008 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Ringelstein, M. et al. Neuromyelitis optica and pregnancy during therapeutic B cell depletion: infant exposure to anti-AQP4 antibody and prevention of rebound relapses with low-dose rituximab postpartum. Mult. Scler. 19, 1544–1547 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Jurewicz, A. & Selmaj, K. Relapse of neuromyelitis optica during pregnancy — treatment options and literature review. Clin. Neurol. Neurosurg. 130, 159–161 (2015).

    Article  PubMed  Google Scholar 

  53. Shang, W. & Liu, J. Neuromyelitis optica during pregnancy. Int. J. Gynaecol. Obstet. 115, 66–68 (2011).

    Article  PubMed  Google Scholar 

  54. Tsugawa, J., Tsuboi, Y., Inoue, H., Baba, Y. & Yamada, T. A case of anti-aquaporin 4 antibody-positive Sjogren syndrome associated with a relapsed myelitis in pregnancy [Japanese]. Rinsho Shinkeigaku 50, 27–30 (2010).

    Article  PubMed  Google Scholar 

  55. Shosha, E., Pittock, S. J., Flanagan, E. & Weinshenker, B. G. Neuromyelitis optica spectrum disorders and pregnancy: interactions and management. Mult. Scler. 23, 1808–1817 (2017).

    Article  PubMed  Google Scholar 

  56. Ajmera, M. R., Boscoe, A., Mauskopf, J., Candrilli, S. D. & Levy, M. Evaluation of comorbidities and health care resource use among patients with highly active neuromyelitis optica. J. Neurol. Sci. 384, 96–103 (2018).

    Article  PubMed  Google Scholar 

  57. Iyer, A., Elsone, L., Appleton, R. & Jacob, A. A review of the current literature and a guide to the early diagnosis of autoimmune disorders associated with neuromyelitis optica. Autoimmunity 47, 154–161 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Wingerchuk, D. M. & Weinshenker, B. G. The emerging relationship between neuromyelitis optica and systemic rheumatologic autoimmune disease. Mult. Scler. 18, 5–10 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Adawi, M., Bisharat, B. & Bowirrat, A. Systemic lupus erythematosus (SLE) complicated by neuromyelitis optica (NMO — Devic’s disease): clinic-pathological report and review of the literature. Clin. Med. Insights Case Rep. 7, 41–47 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pittock, S. J. et al. Neuromyelitis optica and non-organ-specific autoimmunity. Arch. Neurol. 65, 78–83 (2008).

    PubMed  Google Scholar 

  61. Asgari, N. et al. Aquaporin-4-autoimmunity in patients with systemic lupus erythematosus: a predominantly population-based study. Mult. Scler. 24, 331–339 (2018).

    Article  PubMed  Google Scholar 

  62. Lateef, A. & Petri, M. Systemic lupus erythematosus and pregnancy. Rheum. Dis. Clin. North Am. 43, 215–226 (2017).

    Article  PubMed  Google Scholar 

  63. Fischer-Betz, R. & Specker, C. Pregnancy in systemic lupus erythematosus and antiphospholipid syndrome. Best Pract. Res. Clin. Rheumatol. 31, 397–414 (2017).

    Article  PubMed  Google Scholar 

  64. Lazzaroni, M. G. et al. A comprehensive review of the clinical approach to pregnancy and systemic lupus erythematosus. J. Autoimmun. 74, 106–117 (2016).

    Article  PubMed  Google Scholar 

  65. Cervera, R. Antiphospholipid syndrome. Thromb. Res. 151, S43–S47 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Long, Y. et al. Serum anticardiolipin antibodies in patients with neuromyelitis optica spectrum disorder. J. Neurol. 260, 3150–3157 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Sacharidou, A., Shaul, P. W. & Mineo, C. New insights in the pathophysiology of antiphospholipid syndrome. Semin. Thromb. Hemost. 44, 475–482 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Oshiro, B. T., Silver, R. M., Scott, J. R., Yu, H. & Branch, D. W. Antiphospholipid antibodies and fetal death. Obstet. Gynecol. 87, 489–493 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Gilhus, N. E. Myasthenia gravis. N. Engl. J. Med. 375, 2570–2581 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Jarius, S. et al. Neuromyelitis optica spectrum disorders in patients with myasthenia gravis: ten new aquaporin-4 antibody positive cases and a review of the literature. Mult. Scler. 18, 1135–1143 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Leite, M. I. et al. Myasthenia gravis and neuromyelitis optica spectrum disorder: a multicenter study of 16 patients. Neurology 78, 1601–1607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McKeon, A. et al. Coexistence of myasthenia gravis and serological markers of neurological autoimmunity in neuromyelitis optica. Muscle Nerve 39, 87–90 (2009).

    Article  PubMed  Google Scholar 

  73. Massey, J. M. & De Jesus-Acosta, C. Pregnancy and myasthenia gravis. Continuum 20, 115–127 (2014).

    PubMed  Google Scholar 

  74. Chaudhry, S. A., Vignarajah, B. & Koren, G. Myasthenia gravis during pregnancy. Can. Fam. Physician 58, 1346–1349 (2012).

    PubMed  PubMed Central  Google Scholar 

  75. Zifman, E., Litmanovitz, I., Segal, G., Regev, R. & Watemberg, N. Marked hypotonia in an infant of a mother with Devic disease. J. Child. Neurol. 25, 746–747 (2010).

    Article  PubMed  Google Scholar 

  76. Sherman, E. & Han, M. H. Acute and chronic management of neuromyelitis optica spectrum disorder. Curr. Treat. Options Neurol. 17, 48 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Das, G. et al. Rituximab before and during pregnancy: a systematic review, and a case series in MS and NMOSD. Neurol. Neuroimmunol. Neuroinflamm. 5, e453 (2018). This paper suggests that rituximab treatment before or during pregnancy does not increase the risk of birth defects, but might cause B cell depletion, depending on when fetal exposure occurred.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Vukusic, S. et al. Pregnancy outcomes in patients with multiple sclerosis and other autoimmune diseases treated with ocrelizumab in clinical trials and post-marketing studies [abstract P600]. Mult. Scler. 24 (Suppl. 2), 293 (2018).

    Google Scholar 

  79. Pfizer. Solu-Medrone 40mg. emc https://www.medicines.org.uk/emc/product/1550/smpc (2019).

  80. Zentiva. Prednisolone 25mg tablets. emc https://www.medicines.org.uk/emc/product/4204/smpc (2019).

  81. Blanford, A. T. & Pearson Murphy, B. E. In vitro metabolism of prednisolone, dexamethasone, betamethasone, and cortisol by the human placenta. Am. J. Obstet. Gynecol. 127, 264–267 (1977).

    Article  CAS  PubMed  Google Scholar 

  82. Kemp, M. W., Newnham, J. P., Challis, J. G., Jobe, A. H. & Stock, S. J. The clinical use of corticosteroids in pregnancy. Hum. Reprod. Update 22, 240–259 (2016).

    CAS  PubMed  Google Scholar 

  83. European Medicines Agency. Neofordex, INN-dexamethasone. Annex I: summary of product characteristics. EMA https://www.ema.europa.eu/en/documents/product-information/neofordex-epar-product-information_en.pdf (2019).

  84. Walker, B. E. Induction of cleft palate in rabbits by several glucocorticoids. Proc. Soc. Exp. Biol. Med. 125, 1281–1284 (1967).

    Article  CAS  PubMed  Google Scholar 

  85. Pinsky, L. & DiGeorge, A. M. Cleft palate in the mouse: a teratogenic index of glucocorticoid potency. Science 147, 402–403 (1965).

    Article  CAS  PubMed  Google Scholar 

  86. Shah, R. M. & Chaudhry, A. P. Hydrocortisone-induced cleft palate in hamsters. Teratology 7, 191–194 (1973).

    Article  CAS  PubMed  Google Scholar 

  87. Pradat, P. et al. First trimester exposure to corticosteroids and oral clefts. Birth Defects Res. A Clin. Mol. Teratol. 67, 968–970 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Kallen, B. & Olausson, P. O. No increased risk of infant hypospadias after maternal use of loratadine in early pregnancy. Int. J. Med. Sci. 3, 106–107 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hviid, A. & Mølgaard-Nielsen, D. Corticosteroid use during pregnancy and risk of orofacial clefts. CMAJ 183, 796–804 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Skuladottir, H. et al. Corticosteroid use and risk of orofacial clefts. Birth Defects Res. A Clin. Mol. Teratol. 100, 499–506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bandoli, G., Palmsten, K., Forbess Smith, C. J. & Chambers, C. D. A review of systemic corticosteroid use in pregnancy and the risk of select pregnancy and birth outcomes. Rheum. Dis. Clin. North Am. 43, 489–502 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Tegethoff, M., Greene, N., Olsen, J., Schaffner, E. & Meinlschmidt, G. Inhaled glucocorticoids during pregnancy and offspring pediatric diseases: a national cohort study. Am. J. Respir. Crit. Care Med. 185, 557–563 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Ali Khan, A. et al. Does in utero exposure to synthetic glucocorticoids influence birthweight, head circumference and birth length? A systematic review of current evidence in humans. Paediatric Perinat. Epidemiol. 25, 20–36 (2011).

    Article  Google Scholar 

  94. Khalife, N. et al. Prenatal glucocorticoid treatment and later mental health in children and adolescents. PLOS ONE 8, e81394 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hirvikoski, T. et al. Cognitive functions in children at risk for congenital adrenal hyperplasia treated prenatally with dexamethasone. J. Clin. Endocrinol. Metab. 92, 542–548 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Trautman, P. D., Meyer-Bahlburg, H. F. L., Postelnek, J. & New, M. I. Effects of early prenatal dexamethasone on the cognitive and behavioral development of young children: results of a pilot study. Psychoneuroendocrinology 20, 439–449 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Laugesen, K., Byrjalsen, A., Frøslev, T., Olsen, M. S. & Sørensen, H. T. Use of glucocorticoids during pregnancy and risk of attention-deficit/hyperactivity disorder in offspring: a nationwide Danish cohort study. BMJ Open 7, e016825 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Liu, J., Feng, Z. C., Li, J. & Wang, Q. Antenatal dexamethasone has no adverse effects on child physical and cognitive development: a long-term cohort follow-up investigation. J. Matern. Fetal Neonatal Med. 25, 2369–2371 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. de Steenwinkel, F. D. O., Dolhain, R. J. E. M., Hazes, J. M. W. & Hokken-Koelega, A. C. S. Does prednisone use or disease activity in pregnant women with rheumatoid arthritis influence the body composition of their offspring? Reprod. Toxicol. 71, 118–123 (2017).

    Article  PubMed  CAS  Google Scholar 

  100. Katz, F. H. & Duncan, B. R. Letter: entry of prednisone into human milk. N. Engl. J. Med. 293, 1154 (1975).

    Article  CAS  PubMed  Google Scholar 

  101. Öst, L., Wettrell, G., Björkhem, I. & Rane, A. Prednisolone excretion in human milk. J. Pediatr. 106, 1008–1011 (1985).

    Article  PubMed  Google Scholar 

  102. Boz, C. et al. Safety of IV pulse methylprednisolone therapy during breastfeeding in patients with multiple sclerosis. Mult. Scler. 24, 1205–1211 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Hale, T. W. Hale’s Medications & Mothers’ Milk Vol. 18 (Springer, 2018).

  104. National Library of Medicine. Drugs and Lactation Database (LactMed) Prednisone. https://www.ncbi.nlm.nih.gov/books/NBK501077 (2018).

  105. Constantinescu, S. et al. Breast-feeding after transplantation. Best. Pract. Res. Clin. Obstet. Gynaecol. 28, 1163–1173 (2014).

    Article  PubMed  Google Scholar 

  106. Ito, S., Blajchman, A., Stephenson, M., Eliopoulos, C. & Koren, G. Prospective follow-up of adverse reactions in breast-fed infants exposed to maternal medication. Am. J. Obstet. Gynecol. 168, 1393–1399 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. National Library of Medicine. Drugs and Lactation Database (LactMed) Dexamethasone. https://www.ncbi.nlm.nih.gov/books/NBK501767 (2018).

  108. Marathias, V. M., Sawicki, M. J. & Bolton, P. H. 6-Thioguanine alters the structure and stability of duplex DNA and inhibits quadruplex DNA formation. Nucleic Acids Res. 27, 2860–2867 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nagafuchi, K. & Miyazaki, K. Modulation of genotoxicity of azathioprine by intracellular glutathione in hepatocytes. J. Cancer Res. Clin. Oncol. 117, 321–325 (1991).

    Article  CAS  PubMed  Google Scholar 

  110. Lennard, L. The clinical pharmacology of 6-mercaptopurine. Eur. J. Clin. Pharmacol. 43, 329–339 (1992).

    Article  CAS  PubMed  Google Scholar 

  111. Saarikoski, S. & Seppala, M. Immunosuppression during pregnancy: transmission of azathioprine and its metabolites from the mother to the fetus. Am. J. Obstet. Gynecol. 115, 1100–1106 (1973).

    Article  CAS  PubMed  Google Scholar 

  112. de Boer, N. K. H. et al. Azathioprine use during pregnancy: unexpected intrauterine exposure to metabolites. Am. J. Gastroenterol. 101, 1390–1392 (2006).

    Article  PubMed  Google Scholar 

  113. Williamson, R. A. & Karp, L. E. Azathioprine teratogenicity: review of the literature and case report. Obstet. Gynecol. 58, 247–250 (1981).

    CAS  PubMed  Google Scholar 

  114. Polifka, J. E. & Friedman, J. M. Teratogen update: azathioprine and 6-mercaptopurine. Teratology 65, 240–261 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Githens, J. H., Rosenkrantz, J. G. & Tunnock, S. M. Teratogenic effects of azathioprine (Imuran). J. Pediatrics 66, 959–961 (1965).

    Article  CAS  Google Scholar 

  116. Rosenkrantz, J. G., Githens, J. H., Cox, S. M. & Kellum, D. L. Azathioprine (Imuran) and pregnancy. Am. J. Obstet. Gynecol. 97, 387–394 (1967).

    Article  CAS  PubMed  Google Scholar 

  117. Mylan. Azathioprine tablets 50mg. emc https://www.medicines.org.uk/emc/product/2541/smpc (2017).

  118. Clark, J. M. The mutagenicity of azathioprine in mice, Drosophila melanogaster and Neurospora crassa. Mutat. Res. 28, 87–99 (1975).

    Article  CAS  PubMed  Google Scholar 

  119. Ligumsky, M., Badaan, S., Lewis, H. & Meirow, D. Effects of 6-mercaptopurine treatment on sperm production and reproductive performance: a study in male mice. Scand. J. Gastroenterol. 40, 444–449 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Nørgård, B., Fonager, K., Pedersen, L., Jacobsen, B. A. & Sørensen, H. T. Birth outcome in women exposed to 5-aminosalicylic acid during pregnancy: a Danish cohort study. Gut 52, 243–247 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Francella, A. et al. The safety of 6-mercaptopurine for childbearing patients with inflammatory bowel disease: a retrospective cohort study. Gastroenterology 124, 9–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Moskovitz, D. N. et al. The effect on the fetus of medications used to treat pregnant inflammatory bowel-disease patients. Am. J. Gastroenterol. 99, 656–661 (2004).

    Article  PubMed  Google Scholar 

  123. Coelho, J. et al. Pregnancy outcome in patients with inflammatory bowel disease treated with thiopurines: cohort from the CESAME study. Gut 60, 198–203 (2011).

    Article  PubMed  Google Scholar 

  124. Akbari, M., Shah, S., Velayos, F. S., Mahadevan, U. & Cheifetz, A. S. Systematic review and meta-analysis on the effects of thiopurines on birth outcomes from female and male patients with inflammatory bowel disease. Inflamm. Bowel Dis. 19, 15–22 (2013). This meta-analysis indicates that treatment with azathioprine during pregnancy or at the time of conception does not increase the risk of birth defects.

    Article  PubMed  Google Scholar 

  125. Naqvi, R. et al. Outcome of pregnancy in renal allograft recipients: SIUT experience. Transplant. Proc. 38, 2001–2002 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Cleary, B. J. & Kallen, B. Early pregnancy azathioprine use and pregnancy outcomes. Birth Defects Res. A Clin. Mol. Teratol. 85, 647–654 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Goldstein, L. H. et al. Pregnancy outcome of women exposed to azathioprine during pregnancy. Birth Defects Res. A Clin. Mol. Teratol. 79, 696–701 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Flint, J. D., Mouyis, M. & Giles, I. A systematic review of the impact of anti-rheumatic drugs upon male fertility and paternal exposure peri-conception [abstract]. Arthritis Rheumatol. 69 (Suppl. 10), 1810 (2017).

    Google Scholar 

  129. Norgard, B., Pedersen, L., Jacobsen, J., Rasmussen, S. N. & Sorensen, H. T. The risk of congenital abnormalities in children fathered by men treated with azathioprine or mercaptopurine before conception. Aliment. Pharmacol. Ther. 19, 679–685 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Dejaco, C. et al. Azathioprine treatment and male fertility in inflammatory bowel disease. Gastroenterology 121, 1048–1053 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Sau, A. et al. Azathioprine and breastfeeding — is it safe? BJOG 114, 498–501 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Christensen, L. A., Dahlerup, J. F., Nielsen, M. J., Fallingborg, J. F. & Schmiegelow, K. Azathioprine treatment during lactation. Aliment. Pharmacol. Ther. 28, 1209–1213 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Natekar, A., Pupco, A., Bozzo, P. & Koren, G. Safety of azathioprine use during pregnancy. Can. Fam. Physician 57, 1401–1402 (2011).

    PubMed  PubMed Central  Google Scholar 

  134. Alami, Z. et al. Pregnancy outcome following in utero exposure to azathioprine: a French comparative observational study. Therapie 73, 199–207 (2018).

    Article  PubMed  Google Scholar 

  135. Mozaffari, S., Abdolghaffari, A. H., Nikfar, S. & Abdollahi, M. Pregnancy outcomes in women with inflammatory bowel disease following exposure to thiopurines and antitumor necrosis factor drugs: a systematic review with meta-analysis. Hum. Exp. Toxicol. 34, 445–459 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Bullingham, R. E. S., Nicholls, A. J. & Kamm, B. R. Clinical pharmacokinetics of mycophenolate mofetil. Clin. Pharmacokinet. 34, 429–455 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. European Medicines Agency. CellCept, mycophenolate mofetil. Annex I: summary of product characteristics. EMA https://www.ema.europa.eu/en/documents/product-information/cellcept-epar-product-information_en.pdf

  138. Klieger-Grossmann, C. et al. Prenatal exposure to mycophenolate mofetil: an updated estimate. J. Obstet. Gynaecol. Can. 32, 794–797 (2010).

    Article  PubMed  Google Scholar 

  139. Anderka, M. T., Lin, A. E., Abuelo, D. N., Mitchell, A. A. & Rasmussen, S. A. Reviewing the evidence for mycophenolate mofetil as a new teratogen: case report and review of the literature. Am. J. Med. Genet. A 149A, 1241–1248 (2009).

    Article  PubMed  Google Scholar 

  140. Perez-Aytes, A. et al. Mycophenolate mofetil embryopathy: a newly recognized teratogenic syndrome. Eur. J. Med. Genet. 60, 16–21 (2017).

    Article  PubMed  Google Scholar 

  141. Jones, A. et al. Outcomes of pregnancies fathered by solid-organ transplant recipients exposed to mycophenolic acid products. Prog. Transplant. 23, 153–157 (2013).

    Article  PubMed  Google Scholar 

  142. Midtvedt, K., Bergan, S., Reisæter, A. V., Vikse, B. E. & Åsberg, A. Exposure to mycophenolate and fatherhood. Transplantation 101, e214–e217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bannwarth, B., Pehourcq, F., Schaeverbeke, T. & Dehais, J. Clinical pharmacokinetics of low-dose pulse methotrexate in rheumatoid arthritis. Clin. Pharmacokinet. 30, 194–210 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Feldkamp, M. & Carey, J. C. Clinical teratology counseling and consultation case report: low dose methotrexate exposure in the early weeks of pregnancy. Teratology 47, 533–539 (1993).

    Article  CAS  PubMed  Google Scholar 

  145. Weber-Schoendorfer, C. et al. Pregnancy outcome after methotrexate treatment for rheumatic disease prior to or during early pregnancy: a prospective multicenter cohort study. Arthritis Rheumatol. 66, 1101–1110 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. European Medicines Agency. Nordimet, methotrexate. Annex I: summary of product characteristics. EMA https://www.ema.europa.eu/en/documents/product-information/nordimet-epar-product-information_en.pdf (2018).

  147. Leroy, C. et al. Immunosuppressive drugs and fertility. Orphanet J. Rare Dis. 10, 136 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Gutierrez, J. C. & Hwang, K. The toxicity of methotrexate in male fertility and paternal teratogenicity. Expert Opin. Drug Metab. Toxicol. 13, 51–58 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. French, A. E. & Koren, G. Effect of methotrexate on male fertility. Can. Fam. Physician 49, 577–578 (2003).

    PubMed  PubMed Central  Google Scholar 

  150. Eck, L. K. et al. Risk of adverse pregnancy outcome after paternal exposure to methotrexate within 90 days before pregnancy. Obstet. Gynecol. 129, 707–714 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Johns, D. G., Rutherford, L. D., Leighton, P. C. & Vogel, C. L. Secretion of methotrexate into human milk. Am. J. Obstet. Gynecol. 112, 978–980 (1972).

    Article  CAS  PubMed  Google Scholar 

  152. Thorne, J. C., Nadarajah, T., Moretti, M. & Ito, S. Methotrexate use in a breastfeeding patient with rheumatoid arthritis. J. Rheumatol. 41, 2332 (2014).

    Article  PubMed  Google Scholar 

  153. Kavanaugh, A. et al. Proceedings from the American College of Rheumatology Reproductive Health Summit: the management of fertility, pregnancy, and lactation in women with autoimmune and systemic inflammatory diseases. Arthritis Care Res. 67, 313–325 (2015).

    Article  Google Scholar 

  154. van der Woude, C. J. et al. The second European evidenced-based consensus on reproduction and pregnancy in inflammatory bowel disease. J. Crohns Colitis 9, 107–124 (2015).

    Article  PubMed  Google Scholar 

  155. Nguyen, G. C. et al. The Toronto consensus statements for the management of inflammatory bowel disease in pregnancy. Gastroenterology 150, 734–757.e1 (2016).

    Article  PubMed  Google Scholar 

  156. Moretti, M. E., Lee, A. & Ito, S. Which drugs are contraindicated during breastfeeding? Practice guidelines. Can. Fam. Physician 46, 1753–1757 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Pacifici, G. M. & Nottoli, R. Placental transfer of drugs administered to the mother. Clin. Pharmacokinet. 28, 235–269 (1995).

    Article  CAS  PubMed  Google Scholar 

  158. Sockolosky, J. T. & Szoka, F. C. The neonatal Fc receptor, FcRn, as a target for drug delivery and therapy. Adv. Drug Deliv. Rev. 91, 109–124 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Palmeira, P., Quinello, C., Silveira-Lessa, A. L., Zago, C. A. & Carneiro-Sampaio, M. IgG placental transfer in healthy and pathological pregnancies. Clin. Dev. Immunol. 2012, 985646 (2012).

    Article  PubMed  CAS  Google Scholar 

  160. Haghikia, A. et al. Natalizumab use during the third trimester of pregnancy. JAMA Neurol. 71, 891–895 (2014).

    Article  PubMed  Google Scholar 

  161. Witzel, S. J. Lactation and the use of biologic immunosuppressive medications. Breastfeed. Med. 9, 543–546 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Bragnes, Y., Boshuizen, R., de Vries, A., Lexberg, A. & Ostensen, M. Low level of rituximab in human breast milk in a patient treated during lactation. Rheumatology 56, 1047–1048 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Vesga, L., Terdiman, J. P. & Mahadevan, U. Adalimumab use in pregnancy. Gut 54, 890 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Saito, J. et al. Tocilizumab concentrations in maternal serum and breast milk during breastfeeding and a safety assessment in infants: a case study. Rheumatology 57, 1499–1501 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Kelly, R. J. et al. Eculizumab in pregnant patients with paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 373, 1032–1039 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Yarur, A. & Kane, S. V. Update on pregnancy and breastfeeding in the era of biologics. Dig. Liver Dis. 45, 787–794 (2013).

    Article  PubMed  Google Scholar 

  167. Vaidyanathan, A. et al. Developmental immunotoxicology assessment of rituximab in cynomolgus monkeys. Toxicol. Sci. 119, 116–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Chakravarty, E. F., Murray, E. R., Kelman, A. & Farmer, P. Pregnancy outcomes after maternal exposure to rituximab. Blood 117, 1499–1506 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Garcia-Enguidanos, A., Calle, M. E., Valero, J., Luna, S. & Dominguez-Rojas, V. Risk factors in miscarriage: a review. Eur. J. Obstet. Gynecol. Reprod. Biol. 102, 111–119 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Muglia, L. J. & Katz, M. The enigma of spontaneous preterm birth. N. Engl. J. Med. 362, 529–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Grunewald, S. & Jank, A. New systemic agents in dermatology with respect to fertility, pregnancy, and lactation. J. Dtsch. Dermatol. Ges. 13, 277–290 (2015).

    PubMed  Google Scholar 

  172. Miranda-Acuna, J. et al. Rituximab during pregnancy in neuromyelitis optica: a case report. Neurol. Neuroimmunol. Neuroinflamm. 6, e542 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Thurlings, R. M. et al. Clinical response, pharmacokinetics, development of human anti-chimaeric antibodies, and synovial tissue response to rituximab treatment in patients with rheumatoid arthritis. Ann. Rheum. Dis. 69, 409–412 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. European Medicines Agency. MabThera, INN-rituximab. Annex I: summary of product characteristics. EMA http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000165/WC500025821.pdf (2009).

  175. Thone, J., Thiel, S., Gold, R. & Hellwig, K. Treatment of multiple sclerosis during pregnancy — safety considerations. Expert Opin. Drug Saf. 16, 523–534 (2017).

    Article  PubMed  Google Scholar 

  176. European Medicines Agency. Ocrevus, INN-ocrelizumab. Annex I: summary of product characteristics. EMA https://www.ema.europa.eu/en/documents/product-information/ocrevus-epar-product-information_en.pdf (2018).

  177. Nishimoto, N. et al. Toxicity, pharmacokinetics, and dose-finding study of repetitive treatment with the humanized anti-interleukin 6 receptor antibody MRA in rheumatoid arthritis. Phase I/II clinical study. J. Rheumatol. 30, 1426–1435 (2003).

    CAS  PubMed  Google Scholar 

  178. European Medicines Agency. RoActemra. INN-tocilizumab. Annex I: summary of product characteristics. EMA https://www.ema.europa.eu/en/documents/product-information/roactemra-epar-product-information_en.pdf (2019).

  179. Weber-Schoendorfer, C. & Schaefer, C. Pregnancy outcome after tocilizumab therapy in early pregnancy-a case series from the German Embryotox Pharmacovigilance Center. Reprod. Toxicol. 60, 29–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Nakajima, K. et al. Pregnancy outcomes after exposure to tocilizumab: a retrospective analysis of 61 patients in Japan. Mod. Rheumatol. 26, 667–671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hoeltzenbein, M. et al. Tocilizumab use in pregnancy: analysis of a global safety database including data from clinical trials and post-marketing data. Semin. Arthritis Rheum. 46, 238–245 (2016). This analysis identified a slightly higher risk of miscarriage and preterm birth in women who received tocilizumab shortly before or during pregnancy than in the general population.

    Article  CAS  PubMed  Google Scholar 

  182. Borrell, A. & Stergiotou, I. Miscarriage in contemporary maternal-fetal medicine: targeting clinical dilemmas. Ultrasound Obstet. Gynecol. 42, 491–497 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Wacker, E. et al. Does the average drug exposure in pregnant women affect pregnancy outcome? A comparison of two approaches to estimate the baseline risks of adverse pregnancy outcome. Pharmacoepidemiol. Drug Saf. 24, 353–360 (2015).

    Article  PubMed  Google Scholar 

  184. Dolk, H., Loane, M. & Garne, E. The prevalence of congenital anomalies in Europe. Adv. Exp. Med. Biol. 686, 349–364 (2010).

    Article  PubMed  Google Scholar 

  185. Scheuerle, A., Vannappagari, V. X. & Miller, M. K. Measurements of birth defect prevalence: which is most useful as a comparator group for pharmaceutical pregnancy registries? Birth Defects Res. A Clin. Mol. Teratol. 85, 611–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Carey, J. C., Martinez, L., Balken, E., Leen-Mitchell, M. & Robertson, J. Determination of human teratogenicity by the astute clinician method: review of illustrative agents and a proposal of guidelines. Birth Defects Res. A Clin. Mol. Teratol. 85, 63–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Wallenius, M., Salvesen, K. A., Daltveit, A. K. & Skomsvoll, J. F. Miscarriage and stillbirth in women with rheumatoid arthritis. J. Rheumatol. 42, 1570–1572 (2015).

    Article  PubMed  Google Scholar 

  188. Bharti, B. et al. Disease severity and pregnancy outcomes in women with rheumatoid arthritis: results from the Organization of Teratology Information Specialists Autoimmune Diseases in Pregnancy Project. J. Rheumatol. 42, 1376–1382 (2015).

    Article  PubMed  Google Scholar 

  189. Langen, E. S., Chakravarty, E. F., Liaquat, M., El-Sayed, Y. Y. & Druzin, M. L. High rate of preterm birth in pregnancies complicated by rheumatoid arthritis. Am. J. Perinatol. 31, 9–14 (2014).

    PubMed  Google Scholar 

  190. Ehninger, G., Schuler, U., Proksch, B., Zeller, K. P. & Blanz, J. Pharmacokinetics and metabolism of mitoxantrone. A review. Clin. Pharmacokinet. 18, 365–380 (1990).

    Article  CAS  PubMed  Google Scholar 

  191. European Medicines Agency. Novantrone EMEA-H-A-30-1399. Annex III: summary of product characteristics, labelling and package leaflet. EMA http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Novantrone_30/WC500205489.pdf (2016)

  192. Giacalone, P. L., Laffargue, F. & Benos, P. Chemotherapy for breast carcinoma during pregnancy: a French national survey. Cancer 86, 2266–2272 (1999).

    Article  CAS  PubMed  Google Scholar 

  193. Hellwig, K., Schimrigk, S., Chan, A., Epplen, J. & Gold, R. A newborn with Pierre Robin sequence after preconceptional mitoxantrone exposure of a female with multiple sclerosis. J. Neurol. Sci. 307, 164–165 (2011).

    Article  PubMed  Google Scholar 

  194. Azuno, Y. et al. Mitoxantrone and etoposide in breast milk. Am. J. Hematol. 48, 131–132 (1995).

    Article  CAS  PubMed  Google Scholar 

  195. Meistrich, M. L. et al. Rapid recovery of spermatogenesis after mitoxantrone, vincristine, vinblastine, and prednisone chemotherapy for Hodgkin’s disease. J. Clin. Oncol. 15, 3488–3495 (1997).

    Article  CAS  PubMed  Google Scholar 

  196. Cocco, E. et al. Frequency and risk factors of mitoxantrone-induced amenorrhea in multiple sclerosis: the FEMIMS study. Mult. Scler. 14, 1225–1233 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Bontadi, A. et al. Plasma exchange and immunoadsorption effectively remove antiphospholipid antibodies in pregnant patients with antiphospholipid syndrome. J. Clin. Apher. 27, 200–204 (2012).

    Article  PubMed  Google Scholar 

  198. El-Haieg, D. O., Zanati, M. F. & El-Foual, F. M. Plasmapheresis and pregnancy outcome in patients with antiphospholipid syndrome. Int. J. Gynecol. Obstet. 99, 236–241 (2007).

    Article  CAS  Google Scholar 

  199. Abou-Nassar, K., Karsh, J., Giulivi, A. & Allan, D. Successful prevention of thrombotic thrombocytopenic purpura (TTP) relapse using monthly prophylactic plasma exchanges throughout pregnancy in a patient with systemic lupus erythematosus and a prior history of refractory TTP and recurrent fetal loss. Transfus. Apher. Sci. 43, 29–31 (2010).

    Article  PubMed  Google Scholar 

  200. Proia, A. et al. Thrombotic thrombocytopenic purpura and pregnancy: a case report and a review of the literature. Ann. Hematol. 81, 210–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  201. Levine, S. E. & Keesey, J. C. Successful plasmapheresis for fulminant myasthenia gravis during pregnancy. Arch. Neurol. 43, 197–198 (1986).

    Article  CAS  PubMed  Google Scholar 

  202. Batocchi, A. P. et al. Course and treatment of myasthenia gravis during pregnancy. Neurology 52, 447–447 (1999).

    Article  CAS  PubMed  Google Scholar 

  203. Djelmis, J., Sostarko, M., Mayer, D. & Ivanisevic, M. Myasthenia gravis in pregnancy: report on 69 cases. Eur. J. Obstet. Gynecol. Reprod. Biol. 104, 21–25 (2002).

    Article  PubMed  Google Scholar 

  204. Trebst, C. et al. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J. Neurol. 261, 1–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  205. Kleiter, I. et al. Apheresis therapies for NMOSD attacks: a retrospective study of 207 therapeutic interventions. Neurol. Neuroimmunol. Neuroinflamm. 5, e504 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Watson, W. J., Katz, V. L. & Bowes, W. A. Jr. Plasmapheresis during pregnancy. Obstet. Gynecol. 76, 451–457 (1990).

    CAS  PubMed  Google Scholar 

  207. Cox, J. L., Koepsell, S. A. & Shunkwiler, S. M. Therapeutic plasma exchange and pregnancy: a case report and guidelines for performing plasma exchange in a pregnant patient. J. Clin. Apher. 32, 191–195 (2017).

    Article  PubMed  Google Scholar 

  208. Hoffmann, F. et al. Tryptophan immunoadsorption during pregnancy and breastfeeding in patients with acute relapse of multiple sclerosis and neuromyelitis optica. Ther. Adv. Neurol. Disord. 11, 1756286418774973 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Nakamura, Y. et al. Immunoadsorption plasmapheresis as a treatment for pregnancy complicated by systemic lupus erythematosus with positive antiphospholipid antibodies. Am. J. Reprod. Immunol. 41, 307–311 (1999).

    Article  CAS  PubMed  Google Scholar 

  210. Wang, C., Wolf, S., Khan, M. & Mao-Draayer, Y. Interleukin-6 receptor: a novel therapeutic target for neuromyelitis optica. Brain Disord. Ther. 4, e119 (2015).

    Google Scholar 

  211. Yamamura, T. et al. Efficacy of satralizumab (SA237) in subgroups of patients in SAkuraSky: a phase III double-blind, placebo-controlled, add-on study in patients with neuromyelitis optica spectrum disorder (NMOSD) [abstract WCN19-2024]. J. Neurol. Sci. 405, 11–12 (2019).

    Article  Google Scholar 

  212. Gatault, P. et al. Therapeutic drug monitoring of eculizumab: rationale for an individualized dosing schedule. MAbs 7, 1205–1211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. European Medicines Agency. Soliris, INN-eculizumab. Annex I: summary of product characteristics. EMA https://www.ema.europa.eu/en/documents/product-information/soliris-epar-product-information_en.pdf (2019).

  214. Alexion. Alexion announces successful phase 3 PREVENT study of Soliris® (eculizumab) in patients with neuromyelitis optica spectrum disorder (NMOSD). Alexion Pharma https://news.alexionpharma.com/press-release/product-news/alexion-announces-successful-phase-3-prevent-study-soliris-eculizumab-pat (2018).

  215. Sarno, L. et al. Eculizumab in pregnancy: a narrative overview. J. Nephrol. 32, 17–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  216. Hallstensen, R. F. et al. Eculizumab treatment during pregnancy does not affect the complement system activity of the newborn. Immunobiology 220, 452–459 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Kelly, R. et al. The management of pregnancy in paroxysmal nocturnal haemoglobinuria on long term eculizumab. Br. J. Haematol. 149, 446–450 (2010).

    Article  CAS  PubMed  Google Scholar 

  218. Chen, D., Gallagher, S., Monson, N. L., Herbst, R. & Wang, Y. Inebilizumab, a B cell-depleting anti-CD19 antibody for the treatment of autoimmune neurological diseases: insights from preclinical studies. J. Clin. Med. 5, 107 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  219. Agius, M. A. et al. Safety and tolerability of inebilizumab (MEDI-551), an anti-CD19 monoclonal antibody, in patients with relapsing forms of multiple sclerosis: results from a phase 1 randomised, placebo-controlled, escalating intravenous and subcutaneous dose study. Mult. Scler. 25, 235–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  220. Cree, B. A. C. et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 394, 1352–1363 (2019).

    Article  CAS  PubMed  Google Scholar 

  221. European Medicines Agency. Cellcept, INN-mycophenolate mofetil. Annex I: summary of product characteristics. EMA https://www.ema.europa.eu/en/documents/product-information/cellcept-epar-product-information_en.pdf (2018).

Download references

Acknowledgements

K.H. is an investigator of the NEMOS cohort/NationNMO supported by the German Ministry for Education and Research (BMBF) as part of the ‘German Competence Network Multiple Sclerosis’ (KKNMS; FKZ 01GI1602). She is also a member of the international Guthy-Jackson Charitable Foundation (GJCF) and coordinator of the GJCF International Clinical Consortium Sex & Gender Specificity Working Group, and receives grant support from the Innovation Fund of the Federal Joint Committee. I.K.S. has received research funding from the National Multiple Sclerosis Society, the US Department of Defense and the Guthy-Jackson Charitable Foundation. S.J. thanks the Dietmar Hopp Foundation and Merck Serono for funding research on AQP4-IgG-positive NMOSD and on MOG encephalomyelitis. Y.M.-D. is currently supported by grants from the NIH National Institute of Allergy and Infectious Diseases Autoimmune Center of Excellence (UM1-AI110557; NIH NINDS R01-NS080821). E.M. was supported by a Kirschstein-NRSA (2T32HD007505–21) grant. T.C. is currently supported by grants from the Department of Defense, the Guthy-Jackson Charitable Foundation and the National MS Society. S.T. is currently supported by the Innovation Fund of the Federal Joint Committee. M.I.L. receives support from the National Health Service National Specialized Commissioning Group for Neuromyelitis Optica UK and the National Institute for Health Research Oxford Biomedical Research Centre. The authors thank C. Fisher for her assistance in designing the figures for this Review.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Kerstin Hellwig.

Ethics declarations

Competing interests

Y.M.-D. has served as a consultant, speaker and/or received grant support from Acorda, Bayer Pharmaceutical, Biogen Idec, Celgene, Chugai, EMD Serono, Novartis, Questor, Roche-Genentech, Sanofi-Genzyme and Teva Neuroscience. T.C. has served as a one-time consultant for Alexion. M.F. has received speaker honoraria from Biogen Idec. M.I.L. received travel funding and speaker honoraria from Biogen Idec and received a travel grant from Novartis. The work of S.J. was indirectly supported by grants from Dietmar Hopp Stiftung, Germany, and from Merck Serono, Germany (to B. Wildemann, Department of Neurology, University Hospital Heidelberg). K.H. received research support and speaker honoraria from Bayer, Biogen Idec, Genzyme, Merck Serono, Novartis, Roche and Teva. E.M., I.K.S. and S.T. declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks J. de Seze, H. J. Kim and M. Levy for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Mycophenolate Risk Evaluation and Mitigation Strategy: https://www.mycophenolaterems.com/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao-Draayer, Y., Thiel, S., Mills, E.A. et al. Neuromyelitis optica spectrum disorders and pregnancy: therapeutic considerations. Nat Rev Neurol 16, 154–170 (2020). https://doi.org/10.1038/s41582-020-0313-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-020-0313-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing