Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammasome signalling in brain function and neurodegenerative disease

An Author Correction to this article was published on 11 February 2019

This article has been updated

Abstract

The mammalian CNS is an intricate and fragile structure, which on one hand is open to change in order to store information, but on the other hand is vulnerable to damage from injury, pathogen invasion or neurodegeneration. During senescence and neurodegeneration, activation of the innate immune system can occur. Inflammasomes are signalling complexes that regulate cells of the immune system, which in the brain mainly includes microglial cells. In microglia, the NLRP3 (NOD-, LRR- and pyrin domain-containing 3) inflammasome becomes activated when these cells sense proteins such as misfolded or aggregated amyloid-β, α-synuclein and prion protein or superoxide dismutase, ATP and members of the complement pathway. Several other inflammasomes have been described in microglia and the other cells of the brain, including astrocytes and neurons, where their activation and subsequent caspase 1 cleavage contribute to disease development and progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inflammasome activation in microglia.
Fig. 2: NLRP3 transcriptional and post-transcriptional activation.
Fig. 3: Microglia in the healthy and ageing brain.

Similar content being viewed by others

Change history

  • 11 February 2019

    In the originally published version of this article, the competing interests statement indicated that the authors had no competing interests; however, this statement was incorrect. The statement should have read as follows: ‘M.H. receives a consultation fee from IFM Therapeutics, LLC for consultations regarding the pathogenesis and interventional strategies of neurodegenerative disease. E.L. is a scientific co-founder and consultant to IFM Therapeutics. R.M.M. declares no competing interests.’ This error has been corrected in the HTML and PDF versions of the article.

References

  1. Cooper, M. D. & Alder, M. N. The evolution of adaptive immune systems. Cell 124, 815–822 (2006).

    CAS  PubMed  Google Scholar 

  2. Janeway, C. A. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  PubMed  Google Scholar 

  3. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    CAS  PubMed  Google Scholar 

  4. Matzinger, P. An innate sense of danger. Semin. Immunol. 10, 399–415 (1998).

    CAS  PubMed  Google Scholar 

  5. Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu, J. & Chen, Z. J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32, 461–488 (2014).

    CAS  PubMed  Google Scholar 

  7. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    CAS  PubMed  Google Scholar 

  8. Mehta, M. M., Weinberg, S. E. & Chandel, N. S. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol. 17, 608–620 (2017).

    CAS  PubMed  Google Scholar 

  9. Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

    CAS  PubMed  Google Scholar 

  10. Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193–1206 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fernandes-Alnemri, T. et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 14, 1590–1604 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao, Y. & Shao, F. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol. Rev. 265, 85–102 (2015).

    CAS  PubMed  Google Scholar 

  14. Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014).

    CAS  PubMed  Google Scholar 

  15. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Próchnicki, T. & Latz, E. Inflammasomes on the crossroads of innate immune recognition and metabolic control. Cell Metab. 26, 71–93 (2017).

    PubMed  Google Scholar 

  17. Maturana, C. J., Aguirre, A. & Sáez, J. C. High glucocorticoid levels during gestation activate the inflammasome in hippocampal oligodendrocytes of the offspring. Dev. Neurobiol. 77, 625–642 (2017).

    CAS  PubMed  Google Scholar 

  18. Johann, S. et al. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia 63, 2260–2273 (2015).

    PubMed  Google Scholar 

  19. Liu, H.-D. et al. Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem. Res. 38, 2072–2083 (2013).

    CAS  PubMed  Google Scholar 

  20. Tan, M.-S. et al. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis. 5, e1382 (2014).This paper shows that Aβ can activate the NLRP1 inflammasome in neurons, leading to pyroptosis and cognitive impairments.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Silverman, W. R. et al. The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J. Biol. Chem. 284, 18143–18151 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaushal, V. et al. Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ. 22, 1676–1686 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Burm, S. M. et al. Inflammasome-induced IL-1β secretion in microglia is characterized by delayed kinetics and is only partially dependent on inflammatory caspases. J. Neurosci. 35, 678–687 (2015).

    PubMed  Google Scholar 

  24. Walsh, J. G. et al. Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS. Retrovirology 11, 35 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Nyúl-Tóth, Á. et al. Expression of pattern recognition receptors and activation of the non-canonical inflammasome pathway in brain pericytes. Brain Behav. Immun. 64, 220–231 (2017).

    PubMed  Google Scholar 

  26. Minkiewicz, J., de Rivero Vaccari, J. P. & Keane, R. W. Human astrocytes express a novel NLRP2 inflammasome. Glia 61, 1113–1121 (2013).

    PubMed  Google Scholar 

  27. Liu, L. & Chan, C. IPAF inflammasome is involved in interleukin-1β production from astrocytes, induced by palmitate; implications for Alzheimer’s disease. Neurobiol. Aging 35, 309–321 (2014).

    CAS  PubMed  Google Scholar 

  28. Adamczak, S. E. et al. Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J. Cereb. Blood Flow Metab. 34, 621–629 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagyőszi, P. et al. Regulation of NOD-like receptors and inflammasome activation in cerebral endothelial cells. J. Neurochem. 135, 551–564 (2015).

    PubMed  Google Scholar 

  30. Burm, S. M., Zuiderwijk-Sick, E. A., Weert, P. M. & Bajramovic, J. J. ATP-induced IL-1β secretion is selectively impaired in microglia as compared to hematopoietic macrophages. Glia 64, 2231–2246 (2016).

    PubMed  Google Scholar 

  31. Freeman, L. et al. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J. Exp. Med. 214, 1351–1370 (2017).This paper shows that astrocytes also have functional NLRP3 and NLRC4 inflammasomes, and, interestingly, NLRC4 was detected in the brains of patients with multiple sclerosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857–865 (2008).This study first demonstrated that Aβ activates the NLRP3 inflammasome.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Deora, V., Albornoz, E. A., Zhu, K., Woodruff, T. M. & Gordon, R. The ketone body β-hydroxybutyrate does not inhibit synuclein mediated inflammasome activation in microglia. J. Neuroimmune Pharmacol. 12, 568–574 (2017).

    PubMed  Google Scholar 

  34. Codolo, G. et al. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS ONE 8, e55375 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou, Y. et al. MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Mol. Neurodegener. 11, 28 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Zhao, W. et al. TDP-43 activates microglia through NF-κB and NLRP3 inflammasome. Exp. Neurol. 273, 24–35 (2015).

    CAS  PubMed  Google Scholar 

  37. Won, J.-H., Park, S., Hong, S., Son, S. & Yu, J.-W. Rotenone-induced impairment of mitochondrial electron transport chain confers a selective priming signal for NLRP3 inflammasome activation. J. Biol. Chem. 290, 27425–27437 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zielinski, M. R. et al. The NLRP3 inflammasome modulates sleep and NREM sleep delta power induced by spontaneous wakefulness, sleep deprivation and lipopolysaccharide. Brain Behav. Immun. 62, 137–150 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ju, Y.-E. S., Lucey, B. P. & Holtzman, D. M. Sleep and Alzheimer disease pathology — a bidirectional relationship. Nat. Rev. Neurol. 10, 115–119 (2014).

    CAS  PubMed  Google Scholar 

  40. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tan, F. C. C., Hutchison, E. R., Eitan, E. & Mattson, M. P. Are there roles for brain cell senescence in aging and neurodegenerative disorders? Biogerontology 15, 643–660 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Akiyama, H. et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383–421 (2000).

    Google Scholar 

  43. Tha, K. K. et al. Changes in expressions of proinflammatory cytokines IL-1beta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res. 885, 25–31 (2000).

    CAS  PubMed  Google Scholar 

  44. Youm, Y.-H. et al. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 18, 519–532 (2013).This study shows that NLRP3 has an important role in age-related inflammation in both the brain and the periphery.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Norden, D. M. & Godbout, J. P. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol. Appl. Neurobiol. 39, 19–34 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, Z. et al. Differential pathways for interleukin-1β production activated by chromogranin A and amyloid β in microglia. Neurobiol. Aging 34, 2715–2725 (2013).

    CAS  PubMed  Google Scholar 

  47. Henry, C. J. et al. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J. Neuroinflamm. 5, 15 (2008).

    Google Scholar 

  48. Richwine, A. F. et al. Architectural changes to CA1 pyramidal neurons in adult and aged mice after peripheral immune stimulation. Psychoneuroendocrinology 33, 1369–1377 (2008).

    CAS  PubMed  Google Scholar 

  49. Xie, Z., Morgan, T. E., Rozovsky, I. & Finch, C. E. Aging and glial responses to lipopolysaccharide in vitro: greater induction of IL-1 and IL-6, but smaller induction of neurotoxicity. Exp. Neurol. 182, 135–141 (2003).

    CAS  PubMed  Google Scholar 

  50. Huang, Y., Henry, C. J., Dantzer, R., Johnson, R. W. & Godbout, J. P. Exaggerated sickness behavior and brain proinflammatory cytokine expression in aged mice in response to intracerebroventricular lipopolysaccharide. Neurobiol. Aging 29, 1744–1753 (2008).

    CAS  PubMed  Google Scholar 

  51. Shaftel, S. S., Griffin, W. S. T. & O’Banion, M. K. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J. Neuroinflamm. 5, 7 (2008).

    Google Scholar 

  52. Sims, R. et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 49, 1373–1384 (2017).This study demonstrates that microglial-mediated innate immunity is implicated in AD.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Griciuc, A. et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78, 631–643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Morales, I., Jiménez, J. M., Mancilla, M. & Maccioni, R. B. Tau oligomers and fibrils induce activation of microglial cells. J. Alzheimers Dis. 37, 849–856 (2013).

    CAS  PubMed  Google Scholar 

  55. Sanchez-Mejias, E. et al. Soluble phospho-tau from Alzheimer’s disease hippocampus drives microglial degeneration. Acta Neuropathol. 132, 897–916 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Heneka, M. T., Golenbock, D. T. & Latz, E. Innate immunity in Alzheimer’s disease. Nat. Immunol. 16, 229–236 (2015).

    CAS  PubMed  Google Scholar 

  57. Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).This study demonstrates that inflammasome activation occurs in the brains of patients with AD, and murine studies confirm its role in pathology, as inhibition of the NLRP3 inflammasome protects transgenic mice from neuroinflammation and cognitive deficits.

    CAS  PubMed  Google Scholar 

  58. Saresella, M. et al. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol. Neurodegener. 11, 23 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Sheedy, F. J. et al. CD36 coordinates NLRP3 inflammasome activation by facilitating the intracellular nucleation from soluble to particulate ligands in sterile inflammation. Nat. Immunol. 14, 812–820 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Parajuli, B. et al. Oligomeric amyloid β induces IL-1β processing via production of ROS: implication in Alzheimer’s disease. Cell Death Dis. 4, e975 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cho, M.-H. et al. Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy 10, 1761–1775 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Koffie, R. M. et al. Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl Acad. Sci. USA 106, 4012–4017 (2009).

    CAS  PubMed  Google Scholar 

  63. Spires, T. L. et al. Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J. Neurosci. 25, 7278–7287 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Couturier, J. et al. Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease. J. Neuroinflamm. 13, 20 (2016).

    Google Scholar 

  65. Franklin, B. S. et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat. Immunol. 15, 727–737 (2014).This is the first study to demonstrate that ASC specks are released from inflammasome-activated cells, where they can further perpetuate inflammatory responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Leissring, M. A. et al. Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40, 1087–1093 (2003).

    CAS  PubMed  Google Scholar 

  67. Murray, C. A. & Lynch, M. A. Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation. J. Neurosci. 18, 2974–2981 (1998).

    CAS  PubMed  Google Scholar 

  68. Venegas, C. et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552, 355–361 (2017).This study shows that microglia release ASC specks that rapidly bind Aβ, increasing the formation of oligomers and aggregates, thus acting as a seed for Aβ pathology.

    CAS  PubMed  Google Scholar 

  69. Fu, A. K. Y. et al. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc. Natl Acad. Sci. USA 113, E2705–E2713 (2016).

    CAS  PubMed  Google Scholar 

  70. Chen, L., Na, R., Boldt, E. & Ran, Q. NLRP3 inflammasome activation by mitochondrial reactive oxygen species plays a key role in long-term cognitive impairment induced by paraquat exposure. Neurobiol. Aging 36, 2533–2543 (2015).

    CAS  PubMed  Google Scholar 

  71. Dempsey, C. et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav. Immun. 61, 306–316 (2017).

    CAS  PubMed  Google Scholar 

  72. Yin, J. et al. NLRP3 inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Mol. Neurobiol. 55, 1977–1987 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Daniels, M. J. D. et al. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat. Commun. 7, 12504 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu, P.-J., Hung, Y.-F., Liu, H.-Y. & Hsueh, Y.-P. Deletion of the inflammasome sensor Aim2 mitigates Aβ deposition and microglial activation but increases inflammatory cytokine expression in an alzheimer disease mouse model. Neuroimmunomodulation 24, 29–39 (2017).

    CAS  PubMed  Google Scholar 

  75. Tancredi, V. et al. The inhibitory effects of interleukin-6 on synaptic plasticity in the rat hippocampus are associated with an inhibition of mitogen-activated protein kinase ERK. J. Neurochem. 75, 634–643 (2000).

    CAS  PubMed  Google Scholar 

  76. Gustot, A. et al. Amyloid fibrils are the molecular trigger of inflammation in Parkinson’s disease. Biochem. J. 471, 323–333 (2015).

    CAS  PubMed  Google Scholar 

  77. Daniele, S. G. et al. Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders. Sci. Signal. 8, ra45 (2015).

    PubMed  PubMed Central  Google Scholar 

  78. Wang, W. et al. Caspase-1 causes truncation and aggregation of the Parkinson’s disease-associated protein α-synuclein. Proc. Natl Acad. Sci. USA 113, 9587–9592 (2016). These authors show that caspase 1 localizes with α-Syn Lewy bodies in patients with PD, and, importantly, caspase 1 directly cleaves α-Syn, resulting in fragments that can quickly aggregate and are toxic to neuronal cells.

    CAS  PubMed  Google Scholar 

  79. Hung, K.-C., Huang, H.-J., Wang, Y.-T. & Lin, A. M.-Y. Baicalein attenuates α-synuclein aggregation, inflammasome activation and autophagy in the MPP(+)-treated nigrostriatal dopaminergic system in vivo. J. Ethnopharmacol. 194, 522–529 (2016).

    CAS  PubMed  Google Scholar 

  80. Heneka, M. T., Kummer, M. P. & Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 14, 463–477 (2014).

    CAS  PubMed  Google Scholar 

  81. Meissner, F., Molawi, K. & Zychlinsky, A. Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis. Proc. Natl Acad. Sci. USA 107, 13046–13050 (2010). This study shows that mutant SOD can activate caspase 1 cleavage in microglia in an ASC-dependent manner, thus implicating the inflammasome in the progression of ALS.

    CAS  PubMed  Google Scholar 

  82. Bellezza, I. et al. Peroxynitrite activates the NLRP3 inflammasome cascade in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Mol. Neurobiol. 55, 2350–2361 (2017).

    PubMed  Google Scholar 

  83. Italiani, P. et al. Evaluating the levels of interleukin-1 family cytokines in sporadic amyotrophic lateral sclerosis. J. Neuroinflamm. 11, 94 (2014).

    Google Scholar 

  84. Chen-Plotkin, A. S. et al. Brain progranulin expression in GRN-associated frontotemporal lobar degeneration. Acta Neuropathol. 119, 111–122 (2010).

    CAS  PubMed  Google Scholar 

  85. McKee, A. C., Stein, T. D., Kiernan, P. T. & Alvarez, V. E. The neuropathology of chronic traumatic encephalopathy. Brain Pathol. 25, 350–364 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhuang, J. et al. TDP-43 upregulation mediated by the NLRP3 inflammasome induces cognitive impairment in 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47)-treated mice. Brain Behav. Immun. 65, 99–110 (2017).

    CAS  PubMed  Google Scholar 

  87. de Rivero Vaccari, J. P. et al. Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J. Cereb. Blood Flow Metab. 29, 1251–1261 (2009). This paper shows that TBI induces inflammasome activation in rats with cleavage of caspase 1 and IL-1β to their mature forms; however, this is attenuated by treatment with anti-ASC neutralizing antibodies, as is the contusion size induced by injury.

    PubMed  PubMed Central  Google Scholar 

  88. Brickler, T. et al. Nonessential role for the NLRP1 inflammasome complex in a murine model of traumatic brain injury. Mediators Inflamm. 2016, 6373506 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. Saylor, D. et al. HIV-associated neurocognitive disorder — pathogenesis and prospects for treatment. Nat. Rev. Neurol. 12, 234–248 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. Chivero, E. T. et al. HIV-1 tat primes and activates microglial NLRP3 inflammasome-mediated neuroinflammation. J. Neurosci. 37, 3599–3609 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Mamik, M. K. et al. HIV-1 viral protein r activates NLRP3 inflammasome in microglia: implications for HIV-1 associated neuroinflammation. J. Neuroimmune Pharmacol. 12, 233–248 (2017).

    PubMed  Google Scholar 

  92. Tricarico, P. M., Caracciolo, I., Crovella, S. & D’Agaro, P. Zika virus induces inflammasome activation in the glial cell line U87-MG. Biochem. Biophys. Res. Commun. 492, 597–602 (2017).

    CAS  PubMed  Google Scholar 

  93. Kemp, S., Huffnagel, I. C., Linthorst, G. E., Wanders, R. J. & Engelen, M. Adrenoleukodystrophy — neuroendocrine pathogenesis and redefinition of natural history. Nat. Rev. Endocrinol. 12, 606–615 (2016).

    CAS  PubMed  Google Scholar 

  94. Jang, J. et al. 25-hydroxycholesterol contributes to cerebral inflammation of X-linked adrenoleukodystrophy through activation of the NLRP3 inflammasome. Nat. Commun. 7, 13129 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kaushik, D. K., Gupta, M., Kumawat, K. L. & Basu, A. NLRP3 inflammasome: key mediator of neuroinflammation in murine Japanese encephalitis. PLOS ONE 7, e32270 (2012).

  96. Tan, C.-C. et al. NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J. Neuroinflammation 12, 18 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Meng, X.-F. et al. Inhibition of the NLRP3 inflammasome provides neuroprotection in rats following amygdala kindling-induced status epilepticus. J. Neuroinflammation 11, 212 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. Johnson, K. E., Chikoti, L. & Chandran, B. Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J. Virol. 87, 5005–5018 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fann, D. Y.-W. et al. Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis. 4, e790 (2013).

    CAS  PubMed  Google Scholar 

  100. Yang, F. et al. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J. Cereb. Blood Flow Metab. 34, 660–667 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kumar, M. et al. Inflammasome adaptor protein apoptosis-associated speck-like protein containing CARD (ASC) is critical for the immune response and survival in west Nile virus encephalitis. J. Virol. 87, 3655–3667 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ramos, H. J. et al. IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLOS Pathog. 8, e1003039 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.T.H. is supported by grants from the Deutsche Forschungsgesellschaft (DFG; DFG SFBs 1089, HE). E.L. is supported by grants from the DFG (DFG SFBs 645, 670 and 1123; TRRs 83 and 57), a grant from the US National Institutes of Health (1R01HL112661) and by a European Research Council Consolidator grant (InflammAct). E.L. and M.T.H. are members of the excellence cluster ImmunoSensation funded by the DFG. M.T.H. is supported by the European Union Joint Programme–Neurodegenerative Disease (JPND) consortium InCure (funding code 01ED1505A).

Reviewer information

Nature Reviews Neuroscience thanks A. LeBlanc, J. Bajramovic and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

M.T.H., R.M.M. and E.L. researched data for the article, made substantial contribution to discussion of content and contributed to the writing, review and editing of the manuscript before submission.

Corresponding author

Correspondence to Michael T. Heneka.

Ethics declarations

Competing interests

M.H. receives a consultation fee from IFM Therapeutics, LLC for consultations regarding the pathogenesis and interventional strategies of neurodegenerative disease. E.L. is a scientific co-founder and consultant to IFM Therapeutics. R.M.M. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Innate immune system

Evolutionarily conserved arm of the immune system that recognizes pathogens and molecules arising in danger situations via germline-encoded signalling receptors and provides the first line of defence.

Adaptive immune system

The vertebrates’ immune subsystem that relies on clonal expansion of specialized immune cells in which highly specific receptors towards antigens are created through genetic recombination of antigen receptor gene segments to provide long-lasting acquired immunity.

T lymphocytes

A type of lymphocyte with cytotoxic, helper, regulatory and memory functions characterized by expression of the T cell receptor.

B lymphocytes

A type of lymphocyte that expresses the B cell receptor that recognizes specific antigens leading to the production of antibodies that function in providing humoral immunity.

Cell-autonomous immunity

The cell intrinsic immune defence that is provided by the function of innate immune signalling receptors expressed in the individual cell.

Inflammasome

Inflammasomes are multiprotein complexes, formed of an inflammasome sensor molecule with the adaptor ASC and the effector caspase 1, that mediate proteolytic activation of IL-1β family cytokines and pyroptotic cell death.

Pyroptosis

An inflammatory form of programmed cell death that is triggered by inflammatory caspases after activation of inflammasomes or cytoplasmic recognition of LPS and danger-associated molecules.

Sterile tissue inflammation

Inflammation induced by a variety of insults such as molecules released from dying cells that may be injured owing to trauma or crystal deposition or in chronic conditions.

Pericontusional

The area of tissue surrounding a contusion or an injury in the brain, often caused by trauma or an impact to the head.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heneka, M.T., McManus, R.M. & Latz, E. Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci 19, 610–621 (2018). https://doi.org/10.1038/s41583-018-0055-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-018-0055-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing