Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inactivating hepatic follistatin alleviates hyperglycemia

A Publisher Correction to this article was published on 15 August 2018

This article has been updated

Abstract

Unsuppressed hepatic glucose production (HGP) contributes substantially to glucose intolerance and diabetes, which can be modeled by the genetic inactivation of hepatic insulin receptor substrate 1 (Irs1) and Irs2 (LDKO mice). We previously showed that glucose intolerance in LDKO mice is resolved by hepatic inactivation of the transcription factor FoxO1 (that is, LTKO mice)—even though the liver remains insensitive to insulin. Here, we report that insulin sensitivity in the white adipose tissue of LDKO mice is also impaired but is restored in LTKO mice in conjunction with normal suppression of HGP by insulin. To establish the mechanism by which white adipose tissue insulin signaling and HGP was regulated by hepatic FoxO1, we identified putative hepatokines—including excess follistatin (Fst)—that were dysregulated in LDKO mice but normalized in LTKO mice. Knockdown of hepatic Fst in the LDKO mouse liver restored glucose tolerance, white adipose tissue insulin signaling and the suppression of HGP by insulin; however, the expression of Fst in the liver of healthy LTKO mice had the opposite effect. Of potential clinical significance, knockdown of Fst also improved glucose tolerance in high-fat-fed obese mice, and the level of serum Fst was reduced in parallel with glycated hemoglobin in obese individuals with diabetes who underwent therapeutic gastric bypass surgery. We conclude that Fst is a pathological hepatokine that might be targeted for diabetes therapy during hepatic insulin resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hepatic FoxO1 dysregulates WAT insulin signaling.
Fig. 2: Identification of Fst315 as a hepatic FoxO1-regulated hepatokine regulating systemic glucose homeostasis.
Fig. 3: Fst expression and secretion are positively regulated by FoxO1 and downregulated by gastric bypass surgery in obese individuals with diabetes.
Fig. 4: Knockdown of Fst improves WAT insulin sensitivity, reduces HGP and improves glucose tolerance in LDKO mice.
Fig. 5: Fst315 promotes WAT insulin resistance, HGP and glucose intolerance in WT mice.
Fig. 6: Regulation of hepatic gene expression by Fst depends partially on hepatic FoxO1.

Similar content being viewed by others

Change history

  • 15 August 2018

    In the version originally published, many graphs contained units that were formatted inconsistently. The units have been reformatted for consistency throughout the figures. Some units in the Supplementary Information were also updated to correct inconsistent formatting. Additionally, a line erroneously appeared under “GFP” in Fig. 2i, and the “RYGB” labels in Fig. 2h,i were not horizontally aligned. The line has been removed and the labels properly aligned. This article now appears correctly.

References

  1. Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745-758 (2015).

  2. Jin, X., Moskophidis, D. & Mivechi, N. F. Heat shock transcription factor 1 is a key determinant of HCC development by regulating hepatic steatosis and metabolic syndrome. Cell Metab. 14, 91–103 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Samuel, V. T. & Shulman, G. I. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest. 126, 12–22 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Husted, A. S., Trauelsen, M., Rudenko, O., Hjorth, S. A. & Schwartz, T. W. GPCR-mediated signaling of metabolites. Cell Metab. 25, 777–796 (2017).

    Article  PubMed  CAS  Google Scholar 

  5. Stefan, N. & Haring, H. U. The metabolically benign and malignant fatty liver. Diabetes 60, 2011–2017 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. El Ouaamari, A. et al. SerpinB1 promotes pancreatic β cell proliferation. Cell Metab. 23, 194–205 (2016).

    Article  PubMed  CAS  Google Scholar 

  7. Biddinger, S. B. & Kahn, C. R. From mice to men: insights into the insulin resistance syndromes. Annu. Rev. Physiol. 68, 123–158 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. Edgerton, D. S. et al. Insulin’s direct hepatic effect explains the inhibition of glucose production caused by insulin secretion. JCI Insight 2, e91863 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Meyer, C. et al. Renal substrate exchange and gluconeogenesis in normal postabsorptive humans. Am. J. Physiol. Endocrinol. Metab. 282, E428–E434 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. White, M. F. & Copps, K. in Endocrinology Vol. 1 (eds Jameson, J. L. & DeGroot, L. J.) 556–585 (Elsevier, Philadelphia, PA, 2016).

  11. Titchenell, P. M., Lazar, M. A. & Birnbaum, M. J. Unraveling the regulation of hepatic metabolism by insulin. Trends Endocrinol. Metab. 28, 497–505 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Dong, X. C. et al. Inactivation of hepatic FoxO1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab. 8, 65–76 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cheng, Z. et al. FoxO1 integrates insulin signaling with mitochondrial function in the liver. Nat. Med. 15, 1307–1311 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Guo, S. et al. The Irs1 branch of the insulin signaling cascade plays a dominant role in hepatic nutrient homeostasis. Mol. Cell Biol. 29, 5070–5083 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. O’Sullivan, I. et al. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat. Commun. 6, 7079 (2015).

    Article  CAS  Google Scholar 

  16. Lu, M. et al. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and FoxO1. Nat. Med. 18, 388–395 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Titchenell, P.M. et al. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab. 23, 1154-1166 (2016).

  18. Titchenell, P. M., Chu, Q., Monks, B. R. & Birnbaum, M. J. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nat. Commun. 6, 7078 (2015).

    Article  PubMed  CAS  Google Scholar 

  19. Stefan, N. & Haring, H. U. The role of hepatokines in metabolism. Nat. Rev. Endocrinol. 9, 144–152 (2013).

    Article  PubMed  CAS  Google Scholar 

  20. Han, H. Q., Zhou, X., Mitch, W. E. & Goldberg, A. L. Myostatin/activin pathway antagonism: molecular basis and therapeutic potential. Int. J. Biochem. Cell Biol. 45, 2333–2347 (2013).

    Article  PubMed  CAS  Google Scholar 

  21. Hansen, J. S. & Plomgaard, P. Circulating follistatin in relation to energy metabolism. Mol. Cell. Endocrinol. 433, 87–93 (2016).

    Article  PubMed  CAS  Google Scholar 

  22. Bluher, M. et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev. Cell 3, 25–38 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. Shearin, A. L., Monks, B. R., Seale, P. & Birnbaum, M. J. Lack of AKT in adipocytes causes severe lipodystrophy. Mol. Metab. 5, 472–479 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wang, Z. et al. Inhibition of TNF-α improves the bladder dysfunction that is associated with type 2 diabetes. Diabetes 61, 2134–2145 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hansen, J. S. et al. Circulating follistatin is liver-derived and regulated by the glucagon-to-insulin ratio. J. Clin. Endocrinol. Metab. 101, 550–560 (2016).

    Article  PubMed  CAS  Google Scholar 

  26. Hansen, J. et al. Plasma follistatin is elevated in patients with type 2 diabetes: relationship to hyperglycemia, hyperinsulinemia, and systemic low-grade inflammation. Diabetes Metab. Res. Rev. 29, 463–472 (2013).

    Article  PubMed  CAS  Google Scholar 

  27. Brown, M. L. & Schneyer, A. L. Emerging roles for the TGFβ family in pancreatic β-cell homeostasis. Trends Endocrinol. Metab. 21, 441–448 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kucejova, B. et al. Hepatic mTORC1 opposes impaired insulin action to control mitochondrial metabolism in obesity. Cell Rep. 16, 508–519 (2016).

  29. Wallace, T. M., Levy, J. C. & Matthews, D. R. Use and abuse of HOMA modeling. Diabetes Care 27, 1487–1495 (2004).

    Article  PubMed  Google Scholar 

  30. Walton, R. G. et al. Increasing adipocyte lipoprotein lipase improves glucose metabolism in high fat diet-induced obesity. J. Biol. Chem. 290, 11547–11556 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kim, J. K. et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc. Natl Acad. Sci. USA 98, 7522–7527 (2001).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Zhang, W. et al. Integrated regulation of hepatic lipid and glucose metabolism by adipose triacylglycerol lipase and FoxO proteins. Cell Rep. 15, 349–359 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Schneyer, A. L., Wang, Q., Sidis, Y. & Sluss, P. M. Differential distribution of follistatin isoforms: application of a new FS315-specific immunoassay. J. Clin. Endocrinol. Metab. 89, 5067–5075 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. Brown, M. L. et al. Follistatin and follistatin like-3 differentially regulate adiposity and glucose homeostasis. Obesity 19, 1940–1949 (2011).

    Article  PubMed  CAS  Google Scholar 

  35. Ueno, N. et al. Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone. Proc. Natl Acad. Sci. USA 84, 8282–8286 (1987).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Samanta, D. & Datta, P. K. Alterations in the Smad pathway in human cancers. Front. Biosci. (Landmark Ed.) 17, 1281–1293 (2012).

    Article  PubMed Central  CAS  Google Scholar 

  37. Shi, Y. & Massague, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. Massague, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sidis, Y. et al. Biological activity of follistatin isoforms and follistatin-like-3 is dependent on differential cell surface binding and specificity for activin, myostatin, and bone morphogenetic proteins. Endocrinology 147, 3586–3597 (2006).

    Article  PubMed  CAS  Google Scholar 

  40. Lambert-Messerlian, G. M. et al. Inhibins and activins in human fetal abnormalities. Mol. Cell. Endocrinol. 225, 101–108 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. Mukherjee, A. et al. FSTL3 deletion reveals roles for TGF-β family ligands in glucose and fat homeostasis in adults. Proc. Natl Acad. Sci. USA 104, 1348–1353 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Guo, T. et al. Adipocyte ALK7 links nutrient overload to catecholamine resistance in obesity. eLife 3, e03245 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Modica, S. et al. Bmp4 promotes a brown to white-like adipocyte shift. Cell Rep. 16, 2243–2258 (2016).

    Article  PubMed  CAS  Google Scholar 

  44. Wang, Q., Guo, T., Portas, J. & McPherron, A. C. A soluble activin receptor type IIB does not improve blood glucose in streptozotocin-treated mice. Int. J. Biol. Sci. 11, 199–208 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hansen, J. S. et al. Exercise-induced secretion of FGF21 and follistatin are blocked by pancreatic clamp and impaired in type 2 diabetes. J. Clin. Endocrinol. Metab. 101, 2816–2825 (2016).

    Article  PubMed  CAS  Google Scholar 

  46. Ferre, P., Leturque, A., Burnol, A. F., Penicaud, L. & Girard, J. A method to quantify glucose utilization in vivo in skeletal muscle and white adipose tissue of the anaesthetized rat. Biochem. J. 228, 103–110 (1985).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hancer, N. J. et al. Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation. J. Biol. Chem. 289, 12467–12484 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Copps, K. D., Hancer, N. J., Qiu, W. & White, M. F. Serine 302 phosphorylation of mouse insulin receptor substrate 1 (Irs1) is dispensable for normal insulin signaling and feedback regulation by hepatic S6 kinase. J. Biol. Chem. 291, 8602–8617 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhu, A., Romero, R. & Petty, H. R. An enzymatic fluorimetric assay for glucose-6-phosphate: application in an in vitro Warburg-like effect. Anal. Biochem. 388, 97–101 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Tao, R. et al. Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene. J. Biol. Chem. 286, 14681–14690 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Xiong, X., Tao, R., DePinho, R. A. & Dong, X. C. Deletion of hepatic Foxo1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis. PLoS ONE 8, e74340 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Myburgh, R. et al. Optimization of critical hairpin features allows miRNA-based gene knockdown upon single-copy transduction. Mol. Ther. Nucleic Acids 3, e207 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Miao, J. et al. Functional specificities of Brm and Brg-1 Swi/Snf ATPases in the feedback regulation of hepatic bile acid biosynthesis. Mol. Cell. Biol. 29, 6170–6181 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Biddinger’s lab for providing the cDNA from the LIRKO liver. We thank E. Rosen’s lab for providing the 3T3-L1 cells. We thank U. Ozcan’s lab for providing the pAAV2.TBG.PI vector. We thank R. DePinho’s lab for providing the floxed FoxO1 mice. This work was supported by NIH grants DK098655 and project 2 GM021700 (M.F.W.); DK108642 (N.S.); and DK091592, DK107682 and AA024550 (X.C.D.).

Author information

Authors and Affiliations

Authors

Contributions

M.F.W. and R.T. designed the research direction. R.T. performed the majority of the experiments with specialized assistance from C.W., K.D.C., O.S., W.Q., Y.H., J.M., S.L., X.C.D., L.L., M.S. and N.S. All data were analyzed by R.T. and M.F.W. The manuscript was written by R.T. and M.F.W. with assistance from K.D.C.

Corresponding author

Correspondence to Morris F. White.

Ethics declarations

Competing interests

M.F.W. is a scientific consultant for Housey Pharmaceutical Research Laboratories.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1–6

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, R., Wang, C., Stöhr, O. et al. Inactivating hepatic follistatin alleviates hyperglycemia. Nat Med 24, 1058–1069 (2018). https://doi.org/10.1038/s41591-018-0048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0048-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing