Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IL-12p70 and IL-18 gene-modified dendritic cells loaded with tumor antigen-derived peptides or recombinant protein effectively stimulate specific Type-1 CD4+ T-cell responses from normal donors and melanoma patients in vitro

Abstract

Although CD4+ Type-1T helper (Th1) cells secreting interferon-γ (IFN-γ) appear to play an essential role in promoting durable antitumor immunity, we have previously shown that patients with cancer exhibit dysfunctional Th1-type responses against epitopes derived from tumor antigens, such as MAGE-A6. Here, we engineered human dendritic cells (DCs) to secrete high levels of the IFN-γ-inducing cytokines, interleukin (IL)-12p70 and IL-18, via recombinant adenoviral infection to generate an in vitro stimulus capable of promoting previously deficient patient Th1-type responses. Dendritic cells co-infected with Ad.IL-12 and Ad.IL-18 (DC.IL-12/18) were more effective at stimulating MAGE-A6-specific Th1-type CD4+ T-cell responses than DCs infected with either of the cytokine vectors alone, control Ad.Ψ5 virus or uninfected DCs. Furthermore, we show that DC.IL-12/18 loaded with recombinant MAGE-A6 protein (rMAGE) and used as in vitro stimulators promote Th1-type immunity that is frequently directed against multiple MAGE-A6-derived epitopes. The superiority of DC.IL-12/18-based stimulations in melanoma patients was independent of disease stage or current disease status. Based on these results, we believe this modality may prove clinically useful as a vaccine platform to promote the recovery of tumor antigen-specific, Th1-type CD4+ T-cell responses in patients with cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Marchand M, van Baren N, Weynants P, Brichard V, Dreno B, Tessier MH et al. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer 1999; 80: 219–230.

    Article  CAS  PubMed  Google Scholar 

  2. Hersey P, Menzies S, Coventry B, Nguyen T, Farrelly M, Collins S et al. Phase I/II study of immunotherapy with T-cell peptide epitopes in patients with stage IV melanoma. Cancer Immunol Immunother 2005; 54: 208–218.

    Article  CAS  PubMed  Google Scholar 

  3. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H . The central role of CD4+ T cells in the antitumor immune response. J Exp Med 1998; 188: 2357–2368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fallarino F, Grohmann U, Bianchi R, Vacca C, Fioretti MC, Puccetti P . Th1 and Th2 cell clones to a poorly immunogenic tumor antigen initiate CD8+ T cell-dependent tumor eradication in vivo. J Immunol 2000; 165: 5495–5501.

    Article  CAS  PubMed  Google Scholar 

  5. Nishimura T, Nakui M, Sato K, Iwakabe K, Kitamura H, Sekimoto M et al. The critical role of Th1-dominant immunity in tumor immunology. Cancer Chemother Pharmacol 2000; 46: S52–S61.

    Article  CAS  PubMed  Google Scholar 

  6. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4: 328–332.

    Article  CAS  PubMed  Google Scholar 

  7. Liau LM, Jensen ER, Kremen TJ, Odesa SK, Sykes SN, Soung MC et al. Tumor immunity within the central nervous system stimulated by recombinant Listeria monocytogenes vaccination. Cancer Res 2002; 62: 2287–2293.

    CAS  PubMed  Google Scholar 

  8. Disis ML, Grabstein KH, Sleath PR, Cheever MA . Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin Cancer Res 1999; 5: 1289–1297.

    CAS  PubMed  Google Scholar 

  9. Qin Z, Blankenstein T . CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by non-hematopoietic cells. Immunity 2000; 12: 677–686.

    Article  CAS  PubMed  Google Scholar 

  10. Qin Z, Schwartzkopff J, Pradera F, Kammertoens T, Seliger B, Pircher H et al. A critical requirement of interferon-γ-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res 2003; 63: 4095–4100.

    CAS  PubMed  Google Scholar 

  11. Appay V . The physiological role of cytotoxic CD4+ T-cells: the holy grail? Clin Exp Immunol 2004; 138: 10–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Appay V, Zaunders J, Papagno L, Sutton J, Jaramillo A, Waters A et al. Characterization of CD4+ CTLs ex vivo. J Immunol 2002; 168: 5954–5958.

    Article  CAS  PubMed  Google Scholar 

  13. Wittke F, Hoffmann R, Buer J, Dallmann I, Oevermann K, Sel S et al. Interleukin 10 (IL-10): an immunosuppressive factor and independent predictor in patients with metastatic renal cell carcinoma. Br J Cancer 1999; 79: 1182–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lowes MA, Bishop GA, Crotty K, Barnetson RS, Halliday GM . T helper 1 cytokine mRNA is increased in spontaneously regressing primary melanoma. J Invest Dermatol 1997; 108: 914–919.

    Article  CAS  PubMed  Google Scholar 

  15. Reichert TE, Strauss L, Wagner EM, Gooding W, Whiteside TL . Signaling abnormalities, apoptosis, and reduced proliferation of circulating and tumor-infiltrating lymphocytes in patients with oral carcinoma. Clin Cancer Res 2002; 8: 3137–3145.

    PubMed  Google Scholar 

  16. Gray CP, Arosio P, Hersey P . Association of increased levels of heavy-chain ferritin with increased CD4+CD25+ regulatory T-cell levels in patients with melanoma. Clin Cancer Res 2003; 9: 2551–2559.

    CAS  PubMed  Google Scholar 

  17. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B . Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 2003; 9: 606–612.

    PubMed  Google Scholar 

  18. Schwaab T, Heaney JA, Schned AR, Harris RD, Cole BF, Noelle RJ et al. A randomized phase II trial comparing two different sequence combinations of autologous vaccine and human recombinant interferon gamma and human recombinant interferon-α2b therapy in patients with metastatic renal cell carcinoma: clinical outcome and analysis of immunological parameters. J Urol 2000; 163: 1322–1327.

    Article  CAS  PubMed  Google Scholar 

  19. Tatsumi T, Kierstead LS, Ranieri E, Gesualdo L, Schena FP, Finke JH et al. Disease-associated bias in T helper type 1 (Th1)/Th2 CD4+ T cell responses against MAGE-6 in HLA-DRB10401+ patients with renal cell carcinoma or melanoma. J Exp Med 2002; 196: 619–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahn HJ, Maruo S, Tomura M, Mu J, Hamaoka T, Nakanishi K et al. A mechanism underlying synergy between IL-12 and IFN-gamma-inducing factor in enhanced production of IFN-γ. J Immunol 1997; 159: 2125–2131.

    CAS  PubMed  Google Scholar 

  21. Stoll S, Jonuleit H, Schmitt E, Muller G, Yamauchi H, Kurimoto M et al. Production of functional IL-18 by different subtypes of murine and human dendritic cells (DC): DC-derived IL-18 enhances IL-12-dependent Th1 development. Eur J Immunol 1998; 28: 3231–3239.

    Article  CAS  PubMed  Google Scholar 

  22. Yoshimoto T, Takeda K, Tanaka T, Ohkusu K, Kashiwamura S, Okamura H et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-γ production. J Immunol 1998; 161: 3400–3407.

    CAS  PubMed  Google Scholar 

  23. Robinson D, Shibuya K, Mui A, Zonin F, Murphy E, Sana T . IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NF-κB. Immunity 1997; 7: 571–581.

    Article  CAS  PubMed  Google Scholar 

  24. Mazzolini G, Narvaiza I, Perez-Diez A, Rodriguez-Calvillo M, Qian C, Sangro B et al. Genetic heterogeneity in the toxicity to systemic adenoviral gene transfer of interleukin-12. Gene Therapy 2001; 8: 259–267.

    Article  CAS  PubMed  Google Scholar 

  25. Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 1997; 3: 409–417.

    CAS  PubMed  Google Scholar 

  26. Mazzolini G, Prieto J, Melero I . Gene therapy of cancer with interleukin-12. Current Pharmaceut Des 2003; 9: 1981–1991.

    Article  CAS  Google Scholar 

  27. Carson WE, Dierksheide JE, Jabbour S, Anghelina M, Bouchard P, Ku G et al. Coadministration of interleukin-18 and interleukin-12 induces a fatal inflammatory response in mice: critical role of natural killer cell interferon-γproduction and STAT-mediated signal transduction. Blood 2000; 96: 1465–1473.

    CAS  PubMed  Google Scholar 

  28. Tatsumi T, Huang J, Gooding WE, Gambotto A, Robbins PD, Vujanovic NL et al. Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res 2003; 63: 6378–6386.

    CAS  PubMed  Google Scholar 

  29. Hardy S, Kitamura M, Harris-Stansil T, Dai Y, Phipps M . Construction of adenovirus vectors through Cre-lox recombination. J Virol 1997; 71: 1842–1849.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tatsumi T, Kierstead LS, Ranieri E, Gesualdo L, Schena FP, Finke JH et al. MAGE-6 encodes HLA-DRβ1*0401-presented epitopes recognized by CD4+ T cells from patients with melanoma or renal cell carcinoma. Clin Cancer Res 2003; 9: 947–954.

    CAS  PubMed  Google Scholar 

  31. Vujanovic L, Mandic M, Olson WC, Kirkwood JM, Storkus WJ . Tumor-associated antigen MAGE-A6 encodes multiple naturally-processed and poly-HLA-DR presented Th epitopes, one of which is immunologically-related to a Mycoplasma penetrans HF-2 permease-derived peptide. 2005 (submitted for publication).

  32. Ranieri E, Herr W, Gambotto A, Gesualdo L, Schena FP, Finke JH et al. Dendritic cells transduced with an adenovirus vector encoding Epstein–Barr virus latent membrane protein 2B: a new modality for vaccination. J Virol 1999; 73: 10416–10425.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dietz AB, Bulur PA, Brown CA, Pankratz VS, Vuk-Pavlovic S . Maturation of dendritic cells infected by recombinant adenovirus can be delayed without impact on transgene expression. Gene Therapy 2001; 8: 419–423.

    Article  CAS  PubMed  Google Scholar 

  34. Tatsumi T, Herrem CJ, Olson WC, Finke JH, Bukowski RM, Kinch MS et al. Disease stage variation in CD4+ and CD8+ T-cell reactivity to the receptor tyrosine kinase EphA2 in patients with renal cell carcinoma. Cancer Res 2003; 63: 4481–4489.

    CAS  PubMed  Google Scholar 

  35. Gutzmer R, Langer K, Mommert S, Wittmann M, Kapp A, Werfel T . Human dendritic cells express the IL-18R and are chemoattracted to IL-18. J Immunol 2003; 171: 6363–6371.

    Article  CAS  PubMed  Google Scholar 

  36. Kaser A, Kaser S, Kaneider NC, Enrich B, Wiedermann CJ, Tilg H . Interleukin-18 attracts plasmacytoid dendritic cells (DC2s) and promotes Th1 induction by DC2s through IL-18 receptor expression. Blood 2004; 103: 648–655.

    Article  CAS  PubMed  Google Scholar 

  37. Hoover SK, Barrett SK, Turk TM, Lee TC, Bear HD . Cyclophosphamide and abrogation of tumor-induced suppressor T cell activity. Cancer Immunol Immunother 1990; 31: 121–127.

    Article  CAS  PubMed  Google Scholar 

  38. Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolarized mice. Cancer Res 2001; 61: 3689–3697.

    CAS  PubMed  Google Scholar 

  39. North RJ . Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced supressor T cells. J Exp Med 1982; 155: 1063–1074.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs William Chambers, Nikola Vujanovic and Amy Wesa for their careful review and helpful comments provided during the generation of this manuscript. This work was supported by the National Institutes of Health (NIH) Grants RO1 CA57840 and P01 CA100327 (to WJS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W J Storkus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vujanovic, L., Ranieri, E., Gambotto, A. et al. IL-12p70 and IL-18 gene-modified dendritic cells loaded with tumor antigen-derived peptides or recombinant protein effectively stimulate specific Type-1 CD4+ T-cell responses from normal donors and melanoma patients in vitro. Cancer Gene Ther 13, 798–805 (2006). https://doi.org/10.1038/sj.cgt.7700964

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700964

Keywords

This article is cited by

Search

Quick links