Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Both HIV- and EIAV-based lentiviral vectors mediate gene delivery to pancreatic cancer cells and human pancreatic primary patient xenografts

Abstract

Few effective treatments for pancreatic cancer exist, especially for patients with advanced disease. Gene therapy alone, or combined with current treatments, offers an alternative approach. Here we examined the potential of primate and nonprimate lentivectors to mediate gene delivery to this cancer type. VSV-G pseudotyped lentivectors based on human immunodeficiency type-1 virus (HIV-1) and equine infectious anemia virus (EIAV), containing the enhanced green fluorescent protein (EGFP) reporter gene were prepared and characterized for titer and RNA content. Vector-mediated gene delivery was examined in five pancreatic cancer cell lines in vitro, and in MiaPaCa-2 cells as well as in five human primary patient biopsies xenografted subcutaneously in nude mice. While individual cell lines showed differential sensitivities to transduction with lentivectors, all cell lines were successfully transduced with both vector types. Similarly, both vectors transduced MiaPaCa-2 and all of the human primary patient xenografts. We observed 6–29% transduction with HIV-based vectors (n=3 xenografts) and 1.8–30% with EIAV-based vectors (n=4 xenografts). Long-term EIAV-mediated gene expression was recorded in cell lines for up to 6 months. We conclude that these vectors have potential as mediators of clinical gene therapy for pancreatic cancer treatment. Moreover, they are useful laboratory research tools for pancreatic cancer research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Parkin DM, Bray FI, Devesa SS . Cancer burden in the year 2000. The global picture. Eur J Cancer 2001; 37 (Suppl 8): S4–S66.

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C et al. Cancer statistics, 2006. CA Cancer J Clin 2006; 56: 106–130.

    Article  PubMed  Google Scholar 

  3. Tang PA, Tsao MS, Moore MJ . A review of erlotinib and its clinical use. Expert Opin Pharmacother 2006; 7: 177–193.

    Article  CAS  PubMed  Google Scholar 

  4. Burris III HA . Recent updates on the role of chemotherapy in pancreatic cancer. Semin Oncol 2005; 32: S1–S3.

    Article  CAS  PubMed  Google Scholar 

  5. Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 2004; 350: 1200–1210.

    Article  CAS  PubMed  Google Scholar 

  6. Bramhall SR, Allum WH, Jones AG, Allwood A, Cummins C, Neoptolemos JP . Treatment and survival in 13, 560 patients with pancreatic cancer, and incidence of the disease, in the West Midlands: an epidemiological study. Br J Surg 1995; 82: 111–115.

    Article  CAS  PubMed  Google Scholar 

  7. Bhattacharyya M, Lemoine NR . Gene therapy developments for pancreatic cancer. Best Pract Res Clin Gastroenterol 2006; 20: 285–298.

    Article  CAS  PubMed  Google Scholar 

  8. Halloran CM, Ghaneh P, Costello E, Neoptolemos JP . Trials of gene therapy for pancreatic carcinoma. Curr Gastroenterol Rep 2005; 7: 165–169.

    Article  PubMed  Google Scholar 

  9. MacKenzie MJ . Molecular therapy in pancreatic adenocarcinoma. Lancet Oncol 2004; 5: 541–549.

    Article  CAS  PubMed  Google Scholar 

  10. Ghaneh P, Greenhalf W, Humphreys M, Wilson D, Zumstein L, Lemoine NR et al. Adenovirus-mediated transfer of p53 and p16(INK4a) results in pancreatic cancer regression in vitro and in vivo. Gene Therapy 2001; 8: 199–208.

    Article  CAS  PubMed  Google Scholar 

  11. Halloran CM, Ghaneh P, Shore S, Greenhalf W, Zumstein L, Wilson D et al. 5-Fluorouracil or gemcitabine combined with adenoviral-mediated reintroduction of p16INK4A greatly enhanced cytotoxicity in Panc-1 pancreatic adenocarcinoma cells. J Gene Med 2004; 6: 514–525.

    Article  CAS  PubMed  Google Scholar 

  12. Dai Y, Schwarz EM, Gu D, Zhang WW, Sarvetnick N, Verma IM . Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA 1995; 92: 1401–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McClane SJ, Chirmule N, Burke CV, Raper SE . Characterization of the immune response after local delivery of recombinant adenovirus in murine pancreas and successful strategies for readministration. Hum Gene Ther 1997; 8: 2207–2216.

    Article  CAS  PubMed  Google Scholar 

  14. Stapfer M, Hu J, Wei D, Groshen S, Beart Jr RW . Establishment of a nude mouse model of hepatic metastasis for evaluation of targeted retroviral gene delivery. J Surg Oncol 2003; 82: 121–130; discussion 131.

    Article  PubMed  Google Scholar 

  15. Ziske C, Nagaraj S, Marten A, Gorschluter M, Strehl J, Sauerbruch T et al. Retroviral IFN-alpha gene transfer combined with gemcitabine acts synergistically via cell cycle alteration in human pancreatic carcinoma cells implanted orthotopically in nude mice. J Interferon Cytokine Res 2004; 24: 490–496.

    Article  CAS  PubMed  Google Scholar 

  16. Gordon EM, Cornelio GH, Lorenzo III CC, Levy JP, Reed RA, Liu L et al. First clinical experience using a ‘pathotropic’ injectable retroviral vector (Rexin-G) as intervention for stage IV pancreatic cancer. Int J Oncol 2004; 24: 177–185.

    CAS  PubMed  Google Scholar 

  17. Kim VN, Mitrophanous K, Kingsman SM, Kingsman AJ . Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J Virol 1998; 72: 811–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  19. Wiznerowicz M, Trono D . Harnessing HIV for therapy, basic research and biotechnology. Trends Biotechnol 2005; 23: 42–47.

    Article  CAS  PubMed  Google Scholar 

  20. Romano G . Current development of lentiviral-mediated gene transfer. Drug News Perspect 2005; 18: 128–134.

    Article  CAS  PubMed  Google Scholar 

  21. Saenz DT, Poeschla EM . FIV: from lentivirus to lentivector. J Gene Med 2004; 6 (Suppl 1): S95–S104.

    Article  CAS  PubMed  Google Scholar 

  22. Negre D, Cosset FL . Vectors derived from simian immunodeficiency virus (SIV). Biochimie 2002; 84: 1161–1171.

    Article  CAS  PubMed  Google Scholar 

  23. Olsen JC . Gene transfer vectors derived from equine infectious anemia virus. Gene Therapy 1998; 5: 1481–1487.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Deisseroth A . Tumor vascular targeting therapy with viral vectors. Blood 2006; 107: 3027–3033.

    Article  CAS  PubMed  Google Scholar 

  25. Dullaers M, Thielemans K . From pathogen to medicine: HIV-1-derived lentiviral vectors as vehicles for dendritic cell based cancer immunotherapy. J Gene Med 2006; 8: 3–17.

    Article  CAS  PubMed  Google Scholar 

  26. Pellinen R, Hakkarainen T, Wahlfors T, Tulimaki K, Ketola A, Tenhunen A et al. Cancer cells as targets for lentivirus-mediated gene transfer and gene therapy. Int J Oncol 2004; 25: 1753–1762.

    CAS  PubMed  Google Scholar 

  27. Sorio C, Bonora A, Orlandini S, Moore PS, Capelli P, Cristofori P et al. Successful xenografting of cryopreserved primary pancreatic cancers. Virchows Arch 2001; 438: 154–158.

    Article  CAS  PubMed  Google Scholar 

  28. Kotsopoulou E, Kim VN, Kingsman AJ, Kingsman SM, Mitrophanous KA . A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. J Virol 2000; 74: 4839–4852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sirven A, Pflumio F, Zennou V, Titeux M, Vainchenker W, Coulombel L et al. The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 2000; 96: 4103–4110.

    CAS  PubMed  Google Scholar 

  30. Soneoka Y, Cannon PM, Ramsdale EE, Griffiths JC, Romano G, Kingsman SM et al. A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 1995; 23: 628–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mitrophanous K, Yoon S, Rohll J, Patil D, Wilkes F, Kim V et al. Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Therapy 1999; 6: 1808–1818.

    Article  CAS  PubMed  Google Scholar 

  32. Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 2001; 10: 2109–2121.

    Article  CAS  PubMed  Google Scholar 

  33. Martin-Rendon E, White LJ, Olsen A, Mitrophanous KA, Mazarakis ND . New methods to titrate EIAV-based lentiviral vectors. Mol Ther 2002; 5: 566–570.

    Article  CAS  PubMed  Google Scholar 

  34. Thompson CC, Ashcroft FJ, Patel S, Saraga G, Vimalachandran D, Prime W et al. Pancreatic cancer cells overexpress gelsolin family-capping proteins, which contribute to their cell motility. Gut 2007; 56: 95–106.

    Article  CAS  PubMed  Google Scholar 

  35. Schneider G, Siveke JT, Eckel F, Schmid RM . Pancreatic cancer: basic and clinical aspects. Gastroenterology 2005; 128: 1606–1625.

    Article  CAS  PubMed  Google Scholar 

  36. Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho R . Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2006; 20: 1218–1249.

    Article  CAS  PubMed  Google Scholar 

  37. Gallichan WS, Kafri T, Krahl T, Verma IM, Sarvetnick N . Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis. Hum Gene Ther 1998; 9: 2717–2726.

    Article  CAS  PubMed  Google Scholar 

  38. Ju Q, Edelstein D, Brendel MD, Brandhorst D, Brandhorst H, Bretzel RG et al. Transduction of non-dividing adult human pancreatic beta cells by an integrating lentiviral vector. Diabetologia 1998; 41: 736–739.

    Article  CAS  PubMed  Google Scholar 

  39. Giannoukakis N, Mi Z, Gambotto A, Eramo A, Ricordi C, Trucco M et al. Infection of intact human islets by a lentiviral vector. Gene Therapy 1999; 6: 1545–1551.

    Article  CAS  PubMed  Google Scholar 

  40. Esni F, Ghosh B, Biankin AV, Lin JW, Albert MA, Yu X et al. Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas. Development 2004; 131: 4213–4224.

    Article  CAS  PubMed  Google Scholar 

  41. Indraccolo S, Habeler W, Tisato V, Stievano L, Piovan E, Tosello V et al. Gene transfer in ovarian cancer cells: a comparison between retroviral and lentiviral vectors. Cancer Res 2002; 62: 6099–6107.

    CAS  PubMed  Google Scholar 

  42. De Vos J, Bagnis C, Bonnafoux L, Requirand G, Jourdan M, Imbert MC et al. Comparison of murine leukemia virus, human immunodeficiency virus, and adeno-associated virus vectors for gene transfer in multiple myeloma: lentiviral vectors demonstrate a striking capacity to transduce low-proliferating primary tumor cells. Hum Gene Ther 2003; 14: 1727–1739.

    Article  CAS  PubMed  Google Scholar 

  43. Stevenson M . HIV nuclear import: what's the flap? Nat Med 2000; 6: 626–628.

    Article  CAS  PubMed  Google Scholar 

  44. Park F, Kay MA . Modified HIV-1 based lentiviral vectors have an effect on viral transduction efficiency and gene expression in vitro and in vivo. Mol Ther 2001; 4: 164–173.

    Article  CAS  PubMed  Google Scholar 

  45. Bao L, Jaligam V, Zhang XY, Kutner RH, Kantrow SP, Reiser J . Stable transgene expression in tumors and metastases after transduction with lentiviral vectors based on human immunodeficiency virus type 1. Hum Gene Ther 2004; 15: 445–456.

    Article  CAS  PubMed  Google Scholar 

  46. Hase R, Miyamoto M, Uehara H, Kadoya M, Ebihara Y, Murakami Y et al. Pigment epithelium-derived factor gene therapy inhibits human pancreatic cancer in mice. Clin Cancer Res 2005; 11: 8737–8744.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Costello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saraga, G., Mafficini, A., Ghaneh, P. et al. Both HIV- and EIAV-based lentiviral vectors mediate gene delivery to pancreatic cancer cells and human pancreatic primary patient xenografts. Cancer Gene Ther 14, 781–790 (2007). https://doi.org/10.1038/sj.cgt.7701066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701066

Keywords

This article is cited by

Search

Quick links