Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

The human gene for mannan-binding lectin-associated serine protease-2 (MASP-2), the effector component of the lectin route of complement activation, is part of a tightly linked gene cluster on chromosome 1p36.2–3

Abstract

The proteases of the lectin pathway of complement activation, MASP-1 and MASP-2, are encoded by two separate genes. The MASP1 gene is located on chromosome 3q27, the MASP2 gene on chromosome 1p36.23–31. The genes for the classical complement activation pathway proteases, C1r and C1s, are linked on chromosome 12p13. We have shown that the MASP2 gene encodes two gene products, the 76 kDa MASP-2 serine protease and a plasma protein of 19 kDa, termed MAp19 or sMAP. Both gene products are components of the lectin pathway activation complex. We present the complete primary structure of the human MASP2 gene and the tight cluster that this locus forms with non-complement genes. A comparison of the MASP2 gene with the previously characterised C1s gene revealed identical positions of introns separating orthologous coding sequences, underlining the hypothesis that the C1s and MASP2 genes arose by exon shuffling from one ancestral gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Whaley K, Schwaeble W Complement and complement deficiencies Semin Liver Dis 1997 17 297–310

    Article  CAS  Google Scholar 

  2. Lu JH, Thiel S, Wiedemann H, Timpl R, Reid KB Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q J Immunol 1990 144 2287–2294

    CAS  PubMed  Google Scholar 

  3. Matsushita M, Endo Y, Fujita T Complement-activating complex of ficolin and mannose-binding lectin-associated serine protease J Immunol 2000 164 2281–2284

    Article  CAS  Google Scholar 

  4. Hansen S, Holmskov U Structural aspects of collectins and receptors for collectins Immunobiology 1998 199 165–189

    Article  CAS  Google Scholar 

  5. Hoppe H, Reid K Collectins--soluble proteins containing collagenous regions and lectin domains--and their roles in innate immunity Protein Sci 1994 3 1143–1158

    Article  CAS  Google Scholar 

  6. Thiel S, Petersen S, Vorup-Jensen T et al Interaction of C1q and Mannan-Binding Lectin (MBL) with C1r, C1s, MBL-associated serine proteases 1 and 2, and the MBL-associated protein MAp19 J Immunol 2000 165 878–887

    Article  CAS  Google Scholar 

  7. Vorup-Jensen T, Petersen S, Hansen A et al Distinct pathways of mannan-binding lectin (MBL)- and C1 complex autoactivation revealed by reconstitution of MBL with recombinant MBL-associated serine protease-2 J Immunol 2000 165 2093–2100

    Article  CAS  Google Scholar 

  8. Matsushita M, Thiel S, Jensenius J, Terai I, Fujita T Proteolytic activities of two types of mannose-binding lectin-associatedserine protease J Immunol 2000 165 2637–2642

    Article  CAS  Google Scholar 

  9. Takahashi M, Miura S, Ishii N et al An essential role of MASP-1 in activation of the lectin pathway Immunopharmacology 2000 49 3 (Abstract 003)

    Article  Google Scholar 

  10. Stover C, Thiel S, Thelen M, Lynch N, Vorup-Jensen T, Jensenius J, Schwaeble W Two constituents of the initiation complex of the Mannan-Binding Lectin activation pathway of complement are encoded by a single structural gene J Immunol 1999 162 3481–3490

    CAS  PubMed  Google Scholar 

  11. Takahashi M, Endo Y, Fujita T, Matsushita M A truncated form of mannose-binding lectin-associated serine protease (MASP)-2 expressed by alternative polyadenylation is a component of the lectin complement pathway Int Immunol 1999 11 859–863

    Article  CAS  Google Scholar 

  12. Stover C,Thiel S, Lynch N, Schwaeble WThe rat and mouse homologues of MASP-2 and MAp19, components of the mannan-binding lectin activation pathway of complement J Immunol 1999 63 6848–6859

    Google Scholar 

  13. Stover C,Schwaeble W, Lynch N, Thiel S, Speicher MAssignment of the gene encoding Mannan-Binding Lectin-associated serine protease-2 (MASP-2) to human chromosome 1p36.2–3 by in situ hybridization and somatic cell hybrid analysis Cytogenet Cell Genet 1999 84 148–149

    Article  CAS  Google Scholar 

  14. Cooke C, Alwine J The cap and the 3′ splice site similarly affect polyadenylation efficiency Mol Cell Biol 1996 16 2579–2584

    Article  CAS  Google Scholar 

  15. Thiel S, Vorup-Jensen T, Stover C et al A second serine protease associated with mannan-binding lectin that activates complement Nature 1997 386 506–510

    Article  CAS  Google Scholar 

  16. Endo Y, Takahashi M, Nakao M et al Two lineages of mannose-binding lectin-associated serine protease (MASP) in vertebrates J Immunol 1998 161 4924–4930

    CAS  PubMed  Google Scholar 

  17. Endo Y, Sato T, Matsushita M, Fujita T Exon structure of the gene encoding the human mannose-binding protein-associated serine protease light chain: comparison with complement C1r and C1s genes Int Immunol 1996 8 1355–1358

    Article  CAS  Google Scholar 

  18. Reese MG, Eeckman FH Novel Neural Network Algorithms for Improved Eukaryotic Promoter Site Recognition. The 7th international Genome sequencing and analysis conference, Hilton Head Island, South Carolina, 16–20 September 1995

  19. Bucher P Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences J Mol Biol 1990 212 563–578

    Article  CAS  Google Scholar 

  20. Prestridge DS SIGNAL SCAN: A computer program that scans DNA sequences for eukaryotic transcriptional elements CABIOS 1991 7 203–206

    CAS  PubMed  Google Scholar 

  21. Ghosh D New developments of a transcription factors database Trends Biochem Sci 1991 16 445–447

    Article  CAS  Google Scholar 

  22. Kunz, J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva N, Hall M Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression Cell 1993 73 585–596

    Article  CAS  Google Scholar 

  23. Cruz M, Cavallo L, Gorlach J et al Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in cryptococcus neoformans Mol Cell Biol 1999 19 4101–4112

    Article  CAS  Google Scholar 

  24. Sabatini D, Erdjument-Bromage H, Lui M, Tempst P, Snyder S RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs Cell 1994 78 35–43

    Article  CAS  Google Scholar 

  25. Brown E, Albers M, Shin T et al A mammalian protein targeted by G1-arresting rapamycin-receptor complex Nature 1994 369 756–758

    Article  CAS  Google Scholar 

  26. Vilella-Bach M, Nuzzi P, Fang Y, Chen J The FKBP12-rapamycin-binding domain is required for FKBP12-rapamycin-associated protein kinase activity and G1 progression J Biol Chem 1999 274 4266–4272

    Article  CAS  Google Scholar 

  27. Onyango P, Lubyova B, Gardellin P, Kurzbauer R, Weith A Molecular cloning and expression analysis of five novel genes in chromosome 1p36 Genomics 1998 50 187–198

    Article  CAS  Google Scholar 

  28. Lench N, Macadam R, Markham A The human gene encoding FKBP-rapamycin associated protein (FRAP) maps to chromosomal band 1p36.2 Hum Genet 1997 99 547–549

    Article  CAS  Google Scholar 

  29. Moore P, Rosen C, Carter K Assignment of the human FKBP12-rapamycin-associated protein (FRAP) gene to chromosome 1p36 by fluorescence in situ hybridization Genomics 1996 33 331–332

    Article  CAS  Google Scholar 

  30. Gelpi C, Algueró A, Angeles Martinez M, Vidal S, Juarez C, Rodriguez-Sanchez J Identification of protein components reactive with anti-PM/Scl autoantibodies Clin Exp Immunol 1990 81 59–64

    Article  CAS  Google Scholar 

  31. Ge Q, Wu Y, Trieu E, Targoff I Analysis of the specificity of anti-PM-Scl autoantibodies Arthritis Rheum 1994 37 1445–1452

    Article  CAS  Google Scholar 

  32. Briggs M, Burkard K, Butler J Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation J Biol Chem 1998 273 13255–13263

    Article  CAS  Google Scholar 

  33. Bliskovski V, Liddell R, Ramsay E, Miller M, Mock B Structure and localization of mouse Pmscl1 and Pmscl2 genes Genomics 2000 64 106–110

    Article  CAS  Google Scholar 

  34. Ou SH, Wu F, Harrich D, Garcia-Martinez L, Gaynor R Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs J Virol 1995 69 3584–3596

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Peek R, van Gelderen BE, Bruinenberg M, Kijlstra A Molecular cloning of a new angiopoietin-like factor from the human cornea Invest Ophthalmol Vis Sci 1998 39 1782–1788

    CAS  PubMed  Google Scholar 

  36. Tosi M, Duponchel C, Meo T, Couture-Tosi E Complement genes C1r and C1s feature an intronless protease domain closely related to haptoglobin J Mol Biol 1989 208 709–714

    Article  CAS  Google Scholar 

  37. Kusumoto H, Hirosawa S, Salier J, Hagen F, Kurachi K Human genes for complement C1r and C1s in a close tail-to-tail arrangement Proc Natl Acad Sci 1988 85 7307–7311

    Article  CAS  Google Scholar 

  38. Tosi M, Duponchel C, Meo T, Julier C Complete cDNA sequence of human complement C1s and close physical linkage of the homologous genes C1s and C1r Biochemistry 1987 26 8516–8524

    Article  CAS  Google Scholar 

  39. Van Cong N, Tosi M, Gross M et al Assignment of the complement serine protease genes C1r and C1s to chromosome 12 region 12p13 Hum Genet 1988 78 363–368

    Article  Google Scholar 

  40. Dang Q, DiCera E Residue 225 determines the Na+-induced allosteric regulation of catalytic activity in serine proteases Proc Natl Acad Sci USA 1996 93 10653–10656

    Article  CAS  Google Scholar 

  41. Lawson P, Reid K A novel PCR-based technique using expressed sequence tags and gene homology for murine genetic mapping: localization of the complement genes Int Immunology 1999 12 231–240

    Article  Google Scholar 

  42. Irwin D Evolution of an active-site codon in serine proteases Nature 1988 336 429–430

    Article  CAS  Google Scholar 

  43. Long M, Rosenberg C, Gilbert W Intron phase correlations and the evolution of the intron/exon structure of genes Proc Natl Acad Sci USA 1995 92 12495–12499

    Article  CAS  Google Scholar 

  44. Gilbert W, de Souza S, Long M Origin of genes Proc Natl Acad Sci USA 1997 94 7698–7703

    Article  CAS  Google Scholar 

  45. De Souza S, Long M, Klein R, Roy S, Lin S, Gilbert W Toward a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins Proc Natl Acad Sci 1998 95 5094–5099

    Article  CAS  Google Scholar 

  46. Saccone S, De Sario A, Della Valle G, Bernardi G The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosomes Proc Natl Acad Sci 1992 89 4913–4917

    Article  CAS  Google Scholar 

  47. van der Drift P, Chan A, Zehetner G, Westerveld A, Versteeg R Multiple MSP pseudogenes in a local repeat cluster on 1p36 2: an expanding genomic graveyard? Genomics 1999 62 74–81

    CAS  PubMed  Google Scholar 

  48. Romani M, Baldini A, Volpi E, Casciano I, Nobile C, Muresu R, Siniscalco M Concurrent mapping of an adeovirus 5/SV40 integration site and the U1 snRNA cluster (RNU1) within 400 kb of the chromosome 1p36.1 Cytogenet Cell Genet 1994 67 37–40

    Article  CAS  Google Scholar 

  49. White P, Maris J, Beltinger C et al A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2–36.3 Genetics 1995 92 5520–5524

    CAS  Google Scholar 

  50. Guinto ER, Caccia S, Rose T, Futterer K, Waksman G, Di Cera E Unexpected crucial role of residue 225 in serine proteases Proc Natl Acad Sci USA 1999 96 1852–1857

    Article  CAS  Google Scholar 

  51. Emi M, Nakamura Y, Ogawa M et al Cloning, characterization and nucleotide sequences of two cDNAs encoding human pancreatic trypsinogens Gene 1986 41 305–310

    Article  CAS  Google Scholar 

  52. Saier M Families of transmembrane sugar transport proteins Mol Microbiol 2000 35 699–710

    Article  CAS  Google Scholar 

  53. Jentsch TJ, Friedrich T, Schriever A, Yamada H The CLC chloride channel family Pflugers Arch 1999 437 783–795

    Article  CAS  Google Scholar 

  54. Fuchs P, Strehl S, Dworzak M, Himmler A, Ambros P Structure of the human TNF receptor 1 (p60) gene (TNFR1) and localization to chromosome 12p13 Genomics 1992 13 219–224

    Article  CAS  Google Scholar 

  55. Kemper O, Derre J, Cherif D, Engelmann H, Wallach D, Berger R The gene for the type II (p75) tumor necrosis factor receptor (TNF-RII) is localized on band 1p36.2-p36.3 Hum Genet 1991 87 623–624

    Article  CAS  Google Scholar 

  56. Chirgwin J, Przybyla A, MacDonald R, Rutter W Isolation of biologiocally active ribonucleic acid from sources enriched in ribonucleases Biochemistry 1979 18 5294–5299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank The International Institute for the Advancement of Medicine, University of Leicester for kindly providing the non-tumorous human liver specimen used in this study. We acknowledge the expertise of Cathy Summer (Research Genetics, Huntsville, Alabama, USA) in isolating the MASP-2 specific human BAC clone RP11–99P18 (AJ300188). The authors also wish to thank the Sanger Mapping and Sequence groups for the sequence production of RP4–635E18 (AL109811). Guelnihal Yueksekdag is acknowledged for excellent technical support. We especially thank Dr Jim Kaufman (Institute of Animal Health, Compton, England) for his inspiring comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Schwaeble.

Additional information

This work was supported by the Wellcome Trust, the German Research Foundation (Deutsche Forschungsgemeinschaft), the Japanese Society for the Promotion of Science, and the EMDO Foundation, Switzerland.

Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession numbers AL109811, AB033742, AJ297949, AJ299718, and AJ300188.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stover, C., Endo, Y., Takahashi, M. et al. The human gene for mannan-binding lectin-associated serine protease-2 (MASP-2), the effector component of the lectin route of complement activation, is part of a tightly linked gene cluster on chromosome 1p36.2–3 . Genes Immun 2, 119–127 (2001). https://doi.org/10.1038/sj.gene.6363745

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363745

Keywords

This article is cited by

Search

Quick links