Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

IL-10 stimulatory effects on human NK cells explored by gene profile analysis

Abstract

The molecular mechanisms underlying the increase of natural killer (NK) cell anticancer activity mediated by interleukin (IL)-10 have not been elucidated. The aim of this study was to identify potential molecular mediators of IL-10 stimulatory effects by exploring the NK cell gene display induced by this cytokine. Gene profile was determined by high-throughput cDNA microarray and quantitative real-time PCR. In vitro, NK cells resting or conditioned with IL-10 were tested for cytotoxicity, migration and proliferation. IL-10 enhanced mRNA levels of cell activation/cytotoxicity-related genes (eg secretogranin, TIA-1, HMG-1, interferon-inducible genes) not upregulated by IL-2. In line with these findings, IL-10 increased NK cell in vitro cytotoxicity against Daudi cells. Unlike IL-2, IL-10 did not show any significant effect on NK cell in vitro proliferation and migration. However, gene profile analysis showed that IL-10 increased the expression of cell migration-related genes (eg L-selectin, vascular endothelium growth factor receptor-1, plasminogen activator, tissue; formyl peptide receptor, lipoxin A4 receptor), which might support a stimulatory effect not evident with the in vitro functional assay. Overall, gene profiling allowed us to formulate new hypotheses regarding the molecular pathways underlying the stimulatory effects of IL-10 on NK cells, supporting further investigation aimed at defining its role in cancer immune rejection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A . Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683–765.

    Article  CAS  Google Scholar 

  2. Mocellin S, Marincola F, Rossi CR, Nitti D, Lise M . The multifaceted relationship between IL-10 and adaptive immunity: putting together the pieces of a puzzle. Cytokine Growth Factor Rev 2004; 15: 61–76.

    Article  CAS  Google Scholar 

  3. Mocellin S, Panelli MC, Wang E, Nagorsen D, Marincola FM . The dual role of IL-10. Trends Immunol 2003; 24: 36–43.

    Article  CAS  Google Scholar 

  4. Hsieh CL, Chen DS, Hwang LH . Tumor-induced immunosuppression: a barrier to immunotherapy of large tumors by cytokine-secreting tumor vaccine. Hum Gene Ther 2000; 11: 681–692.

    Article  CAS  Google Scholar 

  5. Mocellin S, Wang E, Marincola FM . Cytokines and immune response in the tumor microenvironment. J Immunother 2001; 24: 392–407.

    Article  CAS  Google Scholar 

  6. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S . Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000; 74: 181–273.

    Article  CAS  Google Scholar 

  7. Salazar-Onfray F, Petersson M, Franksson L et al. IL-10 converts mouse lymphoma cells to a CTL-resistant, NK-sensitive phenotype with low but peptide-inducible MHC class I expression. J Immunol 1995; 154: 6291–6298.

    CAS  PubMed  Google Scholar 

  8. Giovarelli M, Musiani P, Modesti A et al. Local release of IL-10 by transfected mouse mammary adenocarcinoma cells does not suppress but enhances antitumor reaction and elicits a strong cytotoxic lymphocyte and antibody-dependent immune memory. J Immunol 1995; 155: 3112–3123.

    CAS  Google Scholar 

  9. Gerard CM, Bruyns C, Delvaux A et al. Loss of tumorigenicity and increased immunogenicity induced by interleukin-10 gene transfer in B16 melanoma cells. Hum Gene Ther 1996; 7: 23–31.

    Article  CAS  Google Scholar 

  10. Adris S, Klein S, Jasnis M et al. IL-10 expression by CT26 colon carcinoma cells inhibits their malignant phenotype and induces a T cell-mediated tumor rejection in the context of a systemic Th2 response. Gene Ther 1999; 6: 1705–1712.

    Article  CAS  Google Scholar 

  11. Barth Jr RJ, Coppola MA, Green WR . In vivo effects of locally secreted IL-10 on the murine antitumor immune response. Ann Surg Oncol 1996; 3: 381–386.

    Article  Google Scholar 

  12. Kundu N, Beaty TL, Jackson MJ, Fulton AM . Antimetastatic and antitumor activities of interleukin 10 in a murine model of breast cancer. J Natl Cancer Inst 1996; 88: 536–541.

    Article  CAS  Google Scholar 

  13. Suzuki T, Tahara H, Narula S, Moore KW, Robbins PD, Lotze MT . Viral interleukin 10 (IL-10), the human herpes virus 4 cellular IL-10 homologue, induces local anergy to allogeneic and syngeneic tumors. J Exp Med 1995; 182: 477–486.

    Article  CAS  Google Scholar 

  14. Ding Y, Qin L, Kotenko SV, Pestka S, Bromberg JS . A single amino acid determines the immunostimulatory activity of interleukin 10. J Exp Med 2000; 191: 213–224.

    Article  CAS  Google Scholar 

  15. Rosenberg SA, Yang JC, Schwartzentruber DJ et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998; 4: 321–327.

    Article  CAS  Google Scholar 

  16. Mocellin S, Ohnmacht GA, Wang E, Marincola FM . Kinetics of cytokine expression in melanoma metastases classifies immune responsiveness. Int J Cancer 2001; 93: 236–242.

    Article  CAS  Google Scholar 

  17. Mocellin S, Rossi C, Pilati P, Nitti D, Marincola F . Quantitative real time PCR: a powerful ally in cancer research. Trends Mol Med 2003; 9: 189–195.

    Article  CAS  Google Scholar 

  18. McCarron SL, Edwards S, Evans PR et al. Influence of cytokine gene polymorphisms on the development of prostate cancer. Cancer Res 2002; 62: 3369–3372.

    CAS  PubMed  Google Scholar 

  19. Howell WM, Turner SJ, Bateman AC, Theaker JM . IL-10 promoter polymorphisms influence tumour development in cutaneous malignant melanoma. Genes Immun 2001; 2: 25–31.

    Article  CAS  Google Scholar 

  20. Zheng LM, Ojcius DM, Garaud F et al. Interleukin-10 inhibits tumor metastasis through an NK cell-dependent mechanism. J Exp Med 1996; 184: 579–584.

    Article  CAS  Google Scholar 

  21. Petersson M, Charo J, Salazar-Onfray F et al. Constitutive IL-10 production accounts for the high NK sensitivity, low MHC class I expression, and poor transporter associated with antigen processing (TAP)-1/2 function in the prototype NK target YAC-1. J Immunol 1998; 161: 2099–2105.

    CAS  PubMed  Google Scholar 

  22. Cai G, Kastelein RA, Hunter CA . IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN-gamma when combined with IL-18. Eur J Immunol 1999; 29: 2658–2665.

    Article  CAS  Google Scholar 

  23. Parato KG, Kumar A, Badley AD et al. Normalization of natural killer cell function and phenotype with effective anti-HIV therapy and the role of IL-10. AIDS 2002; 16: 1251–1256.

    Article  CAS  Google Scholar 

  24. Conti P, Kempuraj D, Kandere K et al. IL-10, an inflammatory/inhibitory cytokine, but not always. Immunol Lett 2003; 86: 123–129.

    Article  CAS  Google Scholar 

  25. Fiorentino DF, Zlotnik A, Vieira P et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 1991; 146: 3444–3451.

    CAS  PubMed  Google Scholar 

  26. Tsuruma T, Yagihashi A, Hirata K et al. Interleukin-10 reduces natural killer (NK) sensitivity of tumor cells by downregulating NK target structure expression. Cell Immunol 1999; 198: 103–110.

    Article  CAS  Google Scholar 

  27. Seo N, Tokura Y, Takigawa M, Egawa K . Depletion of IL-10- and TGF-beta-producing regulatory gamma delta T cells by administering a daunomycin-conjugated specific monoclonal antibody in early tumor lesions augments the activity of CTLs and NK cells. J Immunol 1999; 163: 242–249.

    CAS  Google Scholar 

  28. Kelly JM, Darcy PK, Markby JL et al. Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol 2002; 3: 83–90.

    Article  CAS  Google Scholar 

  29. Wang E, Miller LD, Ohnmacht GA et al. Prospective molecular profiling of melanoma metastases suggests classifiers of immune responsiveness. Cancer Res 2002; 62: 3581–3586.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Panelli MC, Wang E, Phan G et al. Gene-expression profiling of the response of peripheral blood mononuclear cells and melanoma metastases to systemic IL-2 administration. Genome Biol 2002; 3: RESEARCH0035.

    Article  Google Scholar 

  31. Eisen MB, Spellman PT, Brown PO, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–14868.

    Article  CAS  Google Scholar 

  32. Ross DT, Scherf U, Eisen MB et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 2000; 24: 227–235.

    Article  CAS  Google Scholar 

  33. Nielsen MB, Monsurro V, Migueles SA et al. Status of activation of circulating vaccine-elicited CD8+ T cells. J Immunol 2000; 165: 2287–2296.

    Article  CAS  Google Scholar 

  34. Brown PO, Botstein D . Exploring the new world of the genome with DNA microarrays. Nat Genet 1999; 21: 33–37.

    Article  CAS  Google Scholar 

  35. Wang E, Marincola FM . A natural history of melanoma: serial gene expression analysis. Immunol Today 2000; 21: 619–623.

    Article  CAS  Google Scholar 

  36. Gu ZJ, Costes V, Lu ZY et al. Interleukin-10 is a growth factor for human myeloma cells by induction of an oncostatin M autocrine loop. Blood 1996; 88: 3972–3986.

    CAS  PubMed  Google Scholar 

  37. Yue FY, Dummer R, Geertsen R et al. Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int J Cancer 1997; 71: 630–637.

    Article  CAS  Google Scholar 

  38. Nomura H, Nielsen BW, Matsushima K . Molecular cloning of cDNAs encoding a LD78 receptor and putative leukocyte chemotactic peptide receptors. Int Immunol 1993; 5: 1239–1249.

    Article  CAS  Google Scholar 

  39. Campbell JJ, Qin S, Bacon KB, Mackay CR, Butcher EC . Biology of chemokine and classical chemoattractant receptors: differential requirements for adhesion-triggering versus chemotactic responses in lymphoid cells. J Cell Biol 1996; 134: 255–266.

    Article  CAS  Google Scholar 

  40. Resnati M, Pallavicini I, Wang JM et al. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc Natl Acad Sci USA 2002; 99: 1359–1364.

    Article  CAS  Google Scholar 

  41. Le Y, Murphy PM, Wang JM . Formyl-peptide receptors revisited. Trends Immunol 2002; 23: 541–548.

    Article  CAS  Google Scholar 

  42. D'Cunha J, Knight Jr E, Haas AL, Truitt RL, Borden EC . Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc Natl Acad Sci USA 1996; 93: 211–215.

    Article  CAS  Google Scholar 

  43. Griffiths EK, Krawczyk C, Kong YY et al. Positive regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap. Science 2001; 293: 2260–2263.

    Article  CAS  Google Scholar 

  44. Gil D, Schamel WW, Montoya M, Sanchez-Madrid F, Alarcon B . Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 2002; 109: 901–912.

    Article  CAS  Google Scholar 

  45. Decker EL, Nehmann N, Kampen E, Eibel H, Zipfel PF, Skerka C . Early growth response proteins (EGR) and nuclear factors of activated T cells (NFAT) form heterodimers and regulate proinflammatory cytokine gene expression. Nucleic Acids Res 2003; 31: 911–921.

    Article  CAS  Google Scholar 

  46. Iniguez MA, Punzon C, Fresno M . Induction of cyclooxygenase-2 on activated T lymphocytes: regulation of T cell activation by cyclooxygenase-2 inhibitors. J Immunol 1999; 163: 111–119.

    CAS  PubMed  Google Scholar 

  47. Schmielau J, Finn OJ . Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 2001; 61: 4756–4760.

    CAS  PubMed  Google Scholar 

  48. Andersson U, Erlandsson-Harris H, Yang H, Tracey KJ . HMGB1 as a DNA-binding cytokine. J Leukoc Biol 2002; 72: 1084–1091.

    CAS  PubMed  Google Scholar 

  49. Tian Q, Streuli M, Saito H, Schlossman SF, Anderson P . A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell 1991; 67: 629–639.

    Article  CAS  Google Scholar 

  50. Medley QG, Kedersha N, O'Brien S et al. Characterization of GMP-17, a granule membrane protein that moves to the plasma membrane of natural killer cells following target cell recognition. Proc Natl Acad Sci USA 1996; 93: 685–689.

    Article  CAS  Google Scholar 

  51. Romano MF, Lamberti A, Petrella A et al. IL-10 inhibits nuclear factor-kappa B/Rel nuclear activity in CD3-stimulated human peripheral T lymphocytes. J Immunol 1996; 156: 2119–2123.

    CAS  Google Scholar 

  52. Dokter WH, Koopmans SB, Vellenga E . Effects of IL-10 and IL-4 on LPS-induced transcription factors (AP-1, NF-IL6 and NF-kappa B) which are involved in IL-6 regulation. Leukemia 1996; 10: 1308–1316.

    CAS  PubMed  Google Scholar 

  53. Takeshita S, Gage JR, Kishimoto T, Vredevoe DL, Martinez-Maza O . Differential regulation of IL-6 gene transcription and expression by IL- 4 and IL-10 in human monocytic cell lines. J Immunol 1996; 156: 2591–2598.

    CAS  PubMed  Google Scholar 

  54. Wang E, Miller LD, Ohnmacht GA, Liu ET, Marincola FM . High-fidelity mRNA amplification for gene profiling. Nat Biotechnol 2000; 18: 457–459.

    Article  CAS  Google Scholar 

  55. Axelsson LG, Nilsson G, Bjorksten B . Statistical aspects of cell motility determinations with a modified chemotaxis assembly for multiwell filter assays. J Immunol Methods 1981; 46: 251–258.

    Article  CAS  Google Scholar 

  56. Roden M, Lee K, Panelli M, Marincola F . A novel cytolysis assay using fluorescent labeling and quantitative fluorescent scanning technology. J Immunol Methods 1999; 226: 29–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We truly thank Ms Marta Briarava (Department of Oncological and Surgical Sciences, University of Padova, Italy) for her help with the analysis of microarray data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Mocellin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mocellin, S., Panelli, M., Wang, E. et al. IL-10 stimulatory effects on human NK cells explored by gene profile analysis. Genes Immun 5, 621–630 (2004). https://doi.org/10.1038/sj.gene.6364135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364135

Keywords

This article is cited by

Search

Quick links