Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans

Abstract

We investigated the role of DC-SIGN (CD209), long pentraxin 3 (PTX3) and vitamin D receptor (VDR) gene single nucleotide polymorphisms (SNPs) in susceptibility to pulmonary tuberculosis (TB) in 321 TB cases and 347 healthy controls from Guinea-Bissau. Five additional, functionally relevant SNPs within toll-like receptors (TLRs) 2, 4 and 9 were typed but found, when polymorphic, not to affect host vulnerability to pulmonary TB. We did not replicate an association between SNPs in the DC-SIGN promoter and TB. However, we found that two polymorphisms, one in DC-SIGN and one in VDR, were associated in a nonadditive model with disease risk when analyzed in combination with ethnicity (P=0.03 for DC-SIGN and P=0.003 for VDR). In addition, PTX3 haplotype frequencies significantly differed in cases compared to controls and a protective effect was found in association with a specific haplotype (OR 0.78, 95% CI 0.63–0.98). Our findings support previous data showing that VDR SNPs modulate the risk for TB in West Africans and suggest that variation within DC-SIGN and PTX3 also affect the disease outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ducati RG, Ruffino-Netto A, Basso LA, Santos DS . The resumption of consumption – a review on tuberculosis. Mem Inst Oswaldo Cruz 2006; 101: 697–714.

    Article  CAS  Google Scholar 

  2. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 2003; 163: 1009–1021.

    Article  Google Scholar 

  3. Hill AV . Aspects of genetic susceptibility to human infectious diseases. Annu Rev Genet 2006; 40: 469–486.

    Article  CAS  Google Scholar 

  4. Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 2003; 197: 121–127.

    Article  CAS  Google Scholar 

  5. Barreiro LB, Neyrolles O, Babb CL, Tailleux L, Quach H, McElreavey K et al. Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med 2006; 3: 0230–0235.

    Article  CAS  Google Scholar 

  6. Garlanda C, Bottazzi B, Bastone A, Mantovani A . Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol 2005; 23: 337–366.

    Article  CAS  Google Scholar 

  7. Vouret-Craviari V, Cenzuales S, Poli G, Mantovani A . Expression of monocyte chemotactic protein-3 in human monocytes exposed to the mycobacterial cell wall component lipoarabinomannan. Cytokine 1997; 9: 992–998.

    Article  CAS  Google Scholar 

  8. Vouret-Craviari V, Matteucci C, Peri G, Poli G, Introna M, Mantovani A . Expression of a long pentraxin, PTX3, by monocytes exposed to the mycobacterial cell wall component lipoarabinomannan. Infect Immun 1997; 65: 1345–1350.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Azzurri A, Sow OY, Amedei A, Bah B, Diallo S, Peri G et al. IFN-gamma-inducible protein 10 and pentraxin 3 plasma levels are tools for monitoring inflammation and disease activity in Mycobacterium tuberculosis infection. Microbes Infect 2005; 7: 1–8.

    Article  CAS  Google Scholar 

  10. Schroder NW, Schumann RR . Single nucleotide polymorphisms of toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis 2005; 5 : 156–164.

    Article  Google Scholar 

  11. Underhill DM, Ozinsky A, Smith KD, Aderem A . Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA 1999; 96: 14459–14463.

    Article  CAS  Google Scholar 

  12. Ben-Ali M, Barbouche MR, Bousnina S, Chabbou A, Dellagi K . Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin Diagn Lab Immunol 2004; 11: 625–626.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I et al. The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 2004; 23: 219–223.

    Article  CAS  Google Scholar 

  14. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282: 2085–2088.

    Article  CAS  Google Scholar 

  15. Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ . Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 1999; 163: 3920–3927.

    CAS  PubMed  Google Scholar 

  16. Tsuji S, Matsumoto M, Takeuchi O, Akira S, Azuma I, Hayashi A et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect Immun 2000; 68: 6883–6890.

    Article  CAS  Google Scholar 

  17. Means TK, Jones BW, Schromm AB, Shurtleff BA, Smith JA, Keane J et al. Differential effects of a toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J Immunol 2001; 166: 4074–4082.

    Article  CAS  Google Scholar 

  18. Abel B, Thieblemont N, Quesniaux VJ, Brown N, Mpagi J, Miyake K et al. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J Immunol 2002; 169: 3155–3162.

    Article  CAS  Google Scholar 

  19. Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000; 25: 187–191.

    Article  CAS  Google Scholar 

  20. Newport MJ, Allen A, Awomoyi AA, Dunstan SJ, McKinney E, Marchant A et al. The toll-like receptor 4 Asp299Gly variant: no influence on LPS responsiveness or susceptibility to pulmonary tuberculosis in The Gambia. Tuberculosis (Edinb) 2004; 84: 347–352.

    Article  CAS  Google Scholar 

  21. Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A . TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 2005; 202: 1715–1724.

    Article  CAS  Google Scholar 

  22. Lazarus R, Klimecki WT, Raby BA, Vercelli D, Palmer LJ, Kwiatkowski DJ et al. Single-nucleotide polymorphisms in the toll-like receptor 9 gene (TLR9): frequencies, pairwise linkage disequilibrium, and haplotypes in three US ethnic groups and exploratory case-control disease association studies. Genomics 2003; 81: 85–91.

    Article  CAS  Google Scholar 

  23. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR et al. toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006; 311: 1770–1773.

    Article  CAS  Google Scholar 

  24. Bornman L, Campbell SJ, Fielding K, Bah B, Sillah J, Gustafson P et al. Vitamin D receptor polymorphisms and susceptibility to tuberculosis in West Africa: a case-control and family study. J Infect Dis 2004; 190: 1631–1641.

    Article  CAS  Google Scholar 

  25. Sakuntabhai A, Turbpaiboon C, Casademont I, Chuansumrit A, Lowhnoo T, Kajaste-Rudnitski A et al. A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet 2005; 37: 507–513.

    Article  CAS  Google Scholar 

  26. Gomez LM, Anaya JM, Sierra-Filardi E, Cadena J, Corbi A, Martin J . Analysis of DC-SIGN (CD209) functional variants in patients with tuberculosis. Hum Immunol 2006; 67: 808–811.

    Article  CAS  Google Scholar 

  27. Aaby P, Bukh J, Lisse IM, Smits AJ . Measles mortality, state of nutrition, and family structure: a community study from Guinea-Bissau. J Infect Dis 1983; 147: 693–701.

    Article  CAS  Google Scholar 

  28. Gustafson P, Gomes VF, Vieira CS, Rabna P, Seng R, Johansson P et al. Tuberculosis in Bissau: incidence and risk factors in an urban community in sub-Saharan Africa. Int J Epidemiol 2004; 33: 163–172.

    Article  Google Scholar 

  29. Harries A, Maher D, Graham S . Standardized tuberculosis case definitions and treatment categories. In: Harries A, Maher D, Graham S (eds). TB/HIV: A Clinical Manual, 2nd edn. WHO: Geneva, 2004, pp 105–109.

    Google Scholar 

  30. Sirugo G, Schim van der Loeff M, Sam O, Nyan O, Pinder M, Hill AV et al. A national DNA bank in The Gambia, West Africa, and genomic research in developing countries. Nat Genet 2004; 36: 785–786.

    Article  CAS  Google Scholar 

  31. Liu K, Muse SV . PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 2005; 21: 2128–2129.

    Article  CAS  Google Scholar 

  32. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  33. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG . Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered 2002; 53: 79–91.

    Article  Google Scholar 

  34. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  Google Scholar 

  35. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 2001; 69: 138–147.

    Article  CAS  Google Scholar 

  36. Hahn LW, Ritchie MD, Moore JH . Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 2003; 19: 376–382.

    Article  CAS  Google Scholar 

  37. Sanada H, Yatabe J, Midorikawa S, Hashimoto S, Watanabe T, Moore JH et al. Single-nucleotide polymorphisms for diagnosis of salt-sensitive hypertension. Clin Chem 2006; 52: 352–360.

    Article  CAS  Google Scholar 

  38. Williams SM, Ritchie MD, Phillips III JA, Dawson E, Prince M, Dzhura E et al. Multilocus analysis of hypertension: a hierarchical approach. Hum Hered 2004; 57: 28–38.

    Article  Google Scholar 

  39. Tsai CT, Lai LP, Lin JL, Chiang FT, Hwang JJ, Ritchie MD et al. Renin-angiotensin system gene polymorphisms and atrial fibrillation. Circulation 2004; 109: 1640–1646.

    Article  CAS  Google Scholar 

  40. Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N et al. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 2006; 241: 252–261.

    Article  Google Scholar 

  41. Cho YM, Ritchie MD, Moore JH, Park JY, Lee KU, Shin HD et al. Multifactor-dimensionality reduction shows a two-locus interaction associated with type 2 diabetes mellitus. Diabetologia 2004; 47: 549–554.

    Article  CAS  Google Scholar 

  42. Brassat D, Motsinger AA, Caillier SJ, Erlich HA, Walker K, Steiner LL et al. Multifactor dimensionality reduction reveals gene-gene interactions associated with multiple sclerosis susceptibility in African Americans. Genes Immun 2006; 7: 310–315.

    Article  CAS  Google Scholar 

  43. Jakulin A, Bratko I . Analyzing attribute dependencies. In: N Lavrac DG, Blockeel H, Todorovski L (eds). 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2003); 2003. Springer: Cavtat-Dubrovnik, Croatia, 2003, pp 229–240.

    Chapter  Google Scholar 

  44. Jakulin A, Bratko I, Smrke D, Demsar J, Zupan B . Attribute Interactions in Medical Data Analysis. In: M Dojat EK, Barahona P (eds). 9th Conference on Artificial Intelligence in Medicine in Europe (AIME 2003). Springer: Protaras, Cyprus, 2003, pp 229–238.

    Google Scholar 

Download references

Acknowledgements

This study was funded by the MRC award G0000690 to GS, and by Grants from the Danish Medical Research Council, the Danish society of respiratory medicine, the Danish Council of Development Research to RO, CW, MS and LO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Sirugo.

Additional information

Disclosure/conflict of interests

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olesen, R., Wejse, C., Velez, D. et al. DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. Genes Immun 8, 456–467 (2007). https://doi.org/10.1038/sj.gene.6364410

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364410

Keywords

This article is cited by

Search

Quick links