Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Adeno-associated virus vector mediated gene transfer to pancreatic beta cells

Abstract

Insulin-dependent diabetes mellitus (IDDM) or type 1 diabetes is an autoimmune disease that results in destruction of the insulin-producing pancreatic islet beta cells. Several factors induce the invasion of immune cells into islets and trigger inflammation. Gene therapy approaches targeting the islet cells could be an effective treatment to prevent the onset or reverse type 1 diabetes. Allogeneic islet transplantation provides short-term treatment. However, genetically modified islets, which resist the host immune response, could provide long-term solutions. Adeno-associated virus (AAV) is emerging as a prominent vector system for delivering therapeutic genes for human gene therapy. AAV vector can transduce nondividing cells and provide long-term gene expression by integrating into host chromosome. Therefore, it is an appropriate vector system for islet cell gene therapy. To test the efficacy of AAV vector to transduce pancreatic endocrine cells, we constructed AAV vectors using plasmid pSub201. Wild-type AAV DNA analogue from plasmid psub201 was subcloned into a cloning plasmid pSP72 and AAV vectors were constructed by inserting the transgenes with heterologous promoter in place of AAV open reading frames (rep and cap). In this report we demonstrate the transduction of pancreatic islet cells with AAV vectors encoding bacterial β-galactosidase enzyme or enhanced green fluorescent protein (EGFP) as reporter gene. Dispersed porcine and rat islet cells can be transduced by AAV vector, with an efficiency of 47% and 38%, respectively. In particular porcine islet insulin producing beta cells were transduced with an efficiency of 39%. Intact rat islet cells were transduced with an efficiency of 26% as estimated by FACS analysis following transduction with an AAV vector encoding EGFP. Transduction of intact rat islets with an AAV vector did not alter glucose-induced insulin secretion. AAV vector transduction was higher in transformed islet cell lines INS-1 and RIN m5F with an efficiency of 65% and 57%, respectively. These new results suggest that AAV vectors will provide an improved method of gene delivery to pancreatic islets and isolated pancreatic beta cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Brennan FM, Feldmann M . Cytokines in autoimmunity Curr Opin Immunol 1992 4: 39–43

    Article  Google Scholar 

  2. Rabinovitch A . An update on cytokines in the pathogenesis of insulin-dependent diabetes melitus Diabet Metab Rev 1998 14: 129–151

    Article  CAS  Google Scholar 

  3. Bach JF . Insulin-dependent diabetes mellitus as an autoimmune disease Endocr Rev 1994 15: 516–542

    Article  CAS  PubMed  Google Scholar 

  4. Tisch R, McDevitt H . Insulin-dependent diabetes mellitus Cell 1996 85: 291–297

    Article  CAS  PubMed  Google Scholar 

  5. Benoist C, Mathis D . Cell death mediators in autoimmune diabetes: no shortage of subjects Cell 1997 89: 1–3

    CAS  PubMed  Google Scholar 

  6. Efrat S . Prospects for gene therapy of insulin-dependent diabetes mellitus Diabetologia 1998 41: 1401–1409

    Article  CAS  PubMed  Google Scholar 

  7. Kurrer MO, Pakala SV, Hanson HL, Katz JD . Beta cell apoptosis in T cell-mediated autoimmune diabetes Proc Natl Acad Sci USA 1997 94: 213–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mauricio D, Mandrup-Poulsen T . Apoptosis and the pathogenesis of IDDM: a question of life and death Diabetes 1998 47: 1537–1543

    Article  CAS  PubMed  Google Scholar 

  9. Weir GC, Bonner-Weir S . Scientific and political impediments to successful islet transplantation Diabetes 1997 46: 1247–1256

    Article  CAS  PubMed  Google Scholar 

  10. Bedani PL et al. Kaposi's sarcoma in renal transplant recipients: pathogenic relation between the reduced density of Langerhans cells and cyclosporin-A therapy J Nephrol 1999 12: 193–196

    CAS  PubMed  Google Scholar 

  11. Rutten MJ et al. Prolonged survival of adult rat pancreatic islets transfected with E1A-12S adenovirus Pancreas 1999 19: 183–192

    Article  CAS  PubMed  Google Scholar 

  12. Leibowitz G et al. Gene transfer to human pancreatic endocrine cells using viral vectors Diabetes 1999 48: 745–753

    Article  CAS  PubMed  Google Scholar 

  13. Gasa R et al. Overexpression of G11alpha and isoforms of phospholipase C in islet beta-calls reveals a lack of correlation between inositol phosphate accummulation and insulin secretion Diabetes 1999 48: 1035–1044

    Article  CAS  PubMed  Google Scholar 

  14. Gallichan WS et al. Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis Hum Gene Ther 1998 9: 2717–2726

    Article  CAS  PubMed  Google Scholar 

  15. Ju Q et al. Transduction of non-dividing adult human pancreatic beta cells by an integrating lentiviral vector Diabetologia 1998 41: 736–739

    Article  CAS  PubMed  Google Scholar 

  16. Giannoukakis N et al. Infection of intact human islets by a lentiviral vector Gene Therapy 1999 6: 1545–1551

    Article  CAS  PubMed  Google Scholar 

  17. Kotin RM . Prospects for the use of adeno-associated virus as a vector for human gene therapy Hum Gene Ther 1994 5: 793–801

    Article  CAS  PubMed  Google Scholar 

  18. Berns KI, Linden RM . The cryptic life style of adeno-associated virus Bioessays 1995 17: 237–245

    Article  CAS  PubMed  Google Scholar 

  19. Flotte TR, Carter BJ . Adeno-associated virus vectors for gene therapy Gene Therapy 1995 2: 357–362

    CAS  PubMed  Google Scholar 

  20. Kotin MR et al. Site-specific integration by adeno-associated virus Proc Natl Acad Sci USA 1990 87: 2211–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kotin MR, Menninger JC, Ward DC, Berns KI . Mapping and direct visualisation of a region-specific viral DNA integration site on chromosome 19q13-qter Genomics 1991 10: 831–834

    Article  CAS  PubMed  Google Scholar 

  22. Berns KI . Parvovirus replication Microbiol Rev 1990 54: 316–329

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Samulski RJ, Chang LS, Shenk T . Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression J Virol 1989 63: 3822–3828

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Flotte TR . Stable in vivo expression of the cystic fibrosis transmembrane regulator with an adeno-associated virus vector Proc Natl Acad Sci USA 1993 90: 10713–10717

    Article  Google Scholar 

  25. Kaplitt MG et al. Long term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain Nat Genet 1994 8: 148–153

    Article  CAS  PubMed  Google Scholar 

  26. Zhou SZ et al. Adeno-associated virus 2-mediated high efficiency gene transfer into immature and mature subsets of hematopoietic progenitor cells in human umbilical cord blood J Exp Med 1994 179: 1867–1875

    Article  CAS  PubMed  Google Scholar 

  27. Miller JL et al. Recombinant adeno-associated virus (rAAV)-mediated expression of a human γ-globin gene in human progenitor-derived erythroid cells Proc Natl Acad Sci USA 1994 91: 10183–10187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maeda Y et al. Gene transfer into vascular cells using adeno-associated virus (AAV) vectors Cardiovasc Res 1997 35: 514–521

    Article  CAS  PubMed  Google Scholar 

  29. Jooss K, Yang Y, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers J Virol 1998 72: 4212–4223

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lalwani AK et al. Expression of adeno-associated virus integrated transgene within the mammalian vestibular organs Am J Otol 1998 19: 390–395

    CAS  PubMed  Google Scholar 

  31. Lipkowitz MS et al. Transduction of renal cells in vitro and in vivo by adeno-associated virus gene therapy vectors J Am Soc Nephrol 1999 10: 1908–1915

    CAS  PubMed  Google Scholar 

  32. Guy J, Qi X, Muzyczka N, Hauswirth WW . Reporter expression persists 1 year after adeno-associated virus-mediated gene transfer to the optic nerve Arch Ophthalmol 1999 117: 929–937

    Article  CAS  PubMed  Google Scholar 

  33. Wang L et al. Sustained correction of bleeding disorder in hemophilia B mice by gene therapy Proc Natl Acad Sci USA 1999 96: 3906–3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zufferey R et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo Nat Biotechnol 1997 15: 871–875

    Article  CAS  PubMed  Google Scholar 

  35. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions J Virol 1998 72: 1438–1445

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Qing K et al. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2 Nature Med 1999 5: 71–77

    Article  CAS  PubMed  Google Scholar 

  37. Summerford C, Bartlett JS, Samulski RJ . Alpha Vbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection Nature Med 1999 5: 78–82

    Article  CAS  PubMed  Google Scholar 

  38. Kahn SE, Andrikopoulos S, Verchere CB . Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes Diabetes 1999 48: 241–253

    Article  CAS  PubMed  Google Scholar 

  39. Chahine AA et al. Immunomodulation of pancreatic islet allografts in mice with CTLA4Ig secreting muscle cells Transplantation 1995 59: 1313–1318

    Article  CAS  PubMed  Google Scholar 

  40. Lau HT, Yu M, Fontana A, Stoeckert Jr CJ . Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice Science 1996 273: 109–112

    Article  CAS  PubMed  Google Scholar 

  41. Bleich D et al. Resistance to type 1 diabetes induction in 12-lipoxygenase knockout mice J Clin Invest 1999 103: 1431–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blomer U et al. Application of gene therapy to the CNS Hum Mol Genet 1996 5: (Spec Issue) 1397–1404

    Article  PubMed  Google Scholar 

  43. Verma IM, Somia N . Gene therapy – promise, problems and prospects Nature 1997 389: 239–242

    Article  CAS  PubMed  Google Scholar 

  44. Wang S et al. Analysis of a human fetal pancreatic islet cell line Transplant Proc 1997 29: 2219

    Article  CAS  PubMed  Google Scholar 

  45. Blomer U et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vectors J Virol 1997 71: 6641–6649

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bleich D et al. Interleukin-1 beta regulates the expression of a leukocyte type of 12-lipoxygenase in rat islets and RIN m5F cells Endocrinology 1995 136: 5736–5744

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Richard J Samulski for providing the plasmids psub201 and pAd/AAV, and Dr James P Trempe for providing pAVbgal, which was used in our preliminary experiments. We also thank Dr Steve Hager, Neocrine, Irvine, CA, USA for kindly providing porcine islets, Dr Christopher Rhodes for providing the INS-1 cells, and Drs Chen Songnian and Meng Chen for assisting with rat islets. These studies were supported by a grant from the Iacocca Foundation and partly by NIH grant DK-55240. Konkal-Matt Prasad is supported by an Iococca fellowship.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, KM., Yang, Z., Bleich, D. et al. Adeno-associated virus vector mediated gene transfer to pancreatic beta cells. Gene Ther 7, 1553–1561 (2000). https://doi.org/10.1038/sj.gt.3301279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301279

Keywords

This article is cited by

Search

Quick links