Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen

Abstract

Naked DNA vaccines represent an attractive approach for generating antigen-specific immunity because of their stability and simplicity of delivery. There are particular concerns with DNA vaccines however, such as potential integration into the host genome, cell transformation, and limited potency. The usage of DNA-based alphaviral RNA replicons (suicidal DNA vectors) may alleviate the concerns of integration or transformation since suicidal DNA vectors eventually cause lysis of transfected cells. To improve further the potency of suicidal DNA vaccines, we evaluated the effect of linking Mycobacterium tuberculosis heat shock protein 70 (Hsp70) to human papillomavirus type 16 (HPV-16) E7 as a model antigen on antigen-specific immunity generated by a DNA-based Semliki Forest virus (SFV) RNA vector, pSCA1. Our results indicated that this suicidal DNA vaccine containing E7/Hsp70 fusion genes generated significantly higher E7-specific T cell-mediated immune responses than vaccines containing the wild-type E7 gene in vaccinated mice. More importantly, this fusion converted a less effective vaccine into one with significant potency against established E7-expressing metastatic tumors. The antitumor effect was predominantly CD8-dependent. These results indicate that linkage of Hsp70 to the antigen may greatly enhance the potency of suicidal DNA vaccines.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Robinson HL . Nucleic acid vaccines: an overview Vaccine 1997 15: 785–787

    Article  CAS  PubMed  Google Scholar 

  2. Donnelly JJ, Ulmer JB, Shiver JW, Liu MA . DNA vaccines Annu Rev Immunol 1997 15: 617–648

    Article  CAS  PubMed  Google Scholar 

  3. Ying H et al. Cancer therapy using a self-replicating RNA vaccine Nature Med 1999 5: 823–827

    Article  CAS  PubMed  Google Scholar 

  4. Berglund P et al. Enhancing immune responses using suicidal DNA vaccines Nat Biotechnol 1998 16: 562–565

    Article  CAS  PubMed  Google Scholar 

  5. Leitner WW et al. Enhancement of tumor-specific immune response with plasmid DNA replicon vectors Cancer Res 2000 60: 51–55

    CAS  PubMed  PubMed Central  Google Scholar 

  6. DiCiommo DP, Bremner R . Rapid, high level protein production using DNA-based Semliki Forest virus vectors J Biol Chem 1998 273: 18060–18066

    Article  CAS  PubMed  Google Scholar 

  7. Wu TC . Immunology of the human papilloma virus in relation to cancer Curr Opin Immunol 1994 6: 746–754

    Article  CAS  PubMed  Google Scholar 

  8. Chen C-H et al. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene Cancer Res 2000 60: 1035–1042

    CAS  PubMed  Google Scholar 

  9. Janetzki S, Blachere NE, Srivastava PK . Generation of tumor-specific cytotoxic T lymphocytes and memory T cells by immunization with tumor-derived heat shock protein gp96 J Immunother 1998 21: 269–276

    Article  CAS  PubMed  Google Scholar 

  10. Heikema A, Agsteribbe E, Wilschut J, Huckriede A . Generation of heat shock protein-based vaccines by intracellular loading of gp96 with antigenic peptides Immunol Lett 1997 57: 69–74

    Article  CAS  PubMed  Google Scholar 

  11. Ciupitu AM et al. Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes J Exp Med 1998 187: 685–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suzue K, Young RA . Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24 J Immunol 1996 156: 873–879

    CAS  PubMed  Google Scholar 

  13. Chen CH, Wu TC . Experimental vaccine strategies for cancer immunotherapy J Biomed Sci 1998 5: 231–252

    Article  CAS  PubMed  Google Scholar 

  14. Pardoll DM . Cancer vaccines Nature Med 1998 4: 525–531

    Article  CAS  PubMed  Google Scholar 

  15. Wang RF, Rosenberg SA . Human tumor antigens for cancer vaccine development Immunol Rev 1999 170: 85–100

    Article  CAS  PubMed  Google Scholar 

  16. Huang AY et al. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens Science 1994 264: 961–965

    Article  CAS  PubMed  Google Scholar 

  17. Frolov I, Schlesinger S . Translantion of Sindbis virus mRNA: analysis of sequences downstream of the initiating AUG condon that enhance translation J Virol 1996 70: 1182–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Barrios C, Georgopoulos C, Lambert PH, Del Giudice G . Heat shock proteins as carrier molecules: in vivo helper effect mediated by Escherichia coli GroEL and DnaK proteins requires cross-linking with antigen Clin Exp Immunol 1994 98: 229–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suzue K, Zhou X, Eisen HN, Young RA . Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway Proc Natl Acad Sci USA 1997 94: 13146–13151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anthony LS et al. Priming of CD8+ CTL effector cells in mice by immunization with a stress protein-influenza virus nucleoprotein fusion molecule Vaccine 1999 17: 373–383

    Article  CAS  PubMed  Google Scholar 

  21. Mitchell DA, Nair SK, Gilboa E . Dendritic cell/macrophage precursors capture exogenous antigen for MHC class I presentation by dendritic cells Eur J Immunol 1998 28: 1923–1933

    Article  CAS  PubMed  Google Scholar 

  22. Suto R, Srivastava PK . A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides Science 1995 269: 1585–1588

    Article  CAS  PubMed  Google Scholar 

  23. Arnold-Schild D et al. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells J Immunol 1999 162: 3757–3760

    CAS  PubMed  Google Scholar 

  24. Cho BK et al. A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat shock fusion proteins Immunity 2000 12: 263–272

    Article  CAS  PubMed  Google Scholar 

  25. Lukas J et al. DNA tumor virus oncoproteins and retinoblastoma gene mutations share the ability to relieve the cell's requirement for cyclin D1 function in G1 J Cell Biol 1994 125: 625–638

    Article  CAS  PubMed  Google Scholar 

  26. Heck DV, Yee CL, Howley PM, Munger K . Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses Proc Natl Acad Sci USA 1992 89: 4442–4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin K-Y et al. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen Cancer Res 1996 56: 21–26

    CAS  PubMed  Google Scholar 

  28. Feltkamp MC et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells Eur J Immunol 1993 23: 2242–2249

    Article  CAS  PubMed  Google Scholar 

  29. Tindle RW, Fernando GJ, Sterling JC, Frazer IH . A ‘public’ T-helper epitope of the E7 transforming protein of human papillomavirus 16 provides cognate help for several E7 B-cell epitopes from cervical cancer-associated human papillomavirus genotypes Proc Natl Acad Sci USA 1991 88: 5887–5891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu T-C et al. Engineering an intracellular pathway for MHC class II presentation of HPV-16 E7 Proc Natl Acad Sci USA 1995 92: 11671–11675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dialynas DP et al. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule J Immunol 1983 131: 2445–2451

    CAS  PubMed  Google Scholar 

  32. Sarmiento M, Glasebrook AL, Fitch FW . IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt 2 antigen block T cell-mediated cytolysis in the absence of complement J Immunol 1980 125: 2665–2672

    CAS  PubMed  Google Scholar 

  33. Koo GC et al. The NK-1.1(−) mouse: a model to study differentiation of murine NK cells J Immunol 1986 137: 3742–3747

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Rod Bremner for providing the pSCA1 vector. We also appreciate helpful discussions with Drs Drew M Pardoll and Robert J Kurman. We would also like to thank Dr Richard Roden for critical review of the manuscript. This project was supported by the National Cancer Institute and the American Cancer Society. Dr Hsu was supported by the National Science Council of Taiwan (NSC89-2314-B006-104).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, KF., Hung, CF., Cheng, WF. et al. Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen. Gene Ther 8, 376–383 (2001). https://doi.org/10.1038/sj.gt.3301408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301408

Keywords

This article is cited by

Search

Quick links