Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The CDK inhibitors: potential targets for therapeutic stem cell manipulations?

Abstract

Therapies involving adult stem cells are dependent upon sufficient expansion of these cells to repopulate or replace the diseased tissue and are consequently hindered by their relatively quiescent phenotype. Cellular proliferation is governed by the cyclin-dependent kinases, which in a complex with a corresponding cyclin, phosphorylate a number of downstream mediators to drive the cell through the cell cycle. In turn, biochemical activities of the cyclin-dependent kinases are regulated by two families of cyclin-dependent kinase inhibitors, which have been shown to be potent cell intrinsic blocks of adult stem cell proliferation in multiple tissue types. In contrast to normal stem cells, inappropriate regulation of the cell cycle in cancer stem cells may underlie tumorigenesis and failure of conventional chemotherapeutics to fully eradicate a tumor. Thus, definition of the roles of the cyclin-dependent kinase inhibitors in normal and cancer stem cells may permit the development of novel strategies for adult stem cell expansion and therapies specifically targeted to cancer stem cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Zandstra PW, Nagy A . Stem cell bioengineering. Annu Rev Biomed Eng 2001; 3: 275–305.

    Article  CAS  PubMed  Google Scholar 

  2. Bianco P, Robey PG . Stem cells in tissue engineering. Nature 2001; 414: 118–121.

    Article  CAS  PubMed  Google Scholar 

  3. Sherr CJ . Cancer cell cycles. Science 1996; 274: 1672–1677.

    Article  CAS  PubMed  Google Scholar 

  4. Sherr CJ, Roberts JM . Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 1995; 9: 1149–1163.

    Article  CAS  PubMed  Google Scholar 

  5. Sherr CJ . G1 phase progression: cycling on cue (see comments). Cell 1994; 79: 551–555.

    Article  CAS  PubMed  Google Scholar 

  6. Matsuoka S, Huang M, Elledge SJ . Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 1998; 282: 1893–1897.

    Article  CAS  PubMed  Google Scholar 

  7. Barlow C, Brown KD, Deng CX, Tagle DA, Wynshaw-Boris A . Atm selectively regulates distinct p53-dependent cell-cycle checkpoint and apoptotic pathways. Nat Genet 1997; 17: 453–456.

    Article  CAS  PubMed  Google Scholar 

  8. Bradford GB, Williams B, Rossi R, Bertoncello I . Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol 1997; 25: 445–453.

    CAS  PubMed  Google Scholar 

  9. Mahmud N, Devine SM, Weller KP, Parmar S, Sturgeon C, Nelson MC et al. The relative quiescence of hematopoietic stem cells in nonhuman primates. Blood 2001; 97: 3061–3068.

    Article  CAS  PubMed  Google Scholar 

  10. Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM . Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 1989; 57: 201–209.

    Article  CAS  PubMed  Google Scholar 

  11. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 2004; 22: 411–417.

    Article  CAS  PubMed  Google Scholar 

  12. Dunnwald M, Chinnathambi S, Alexandrunas D, Bickenbach JR . Mouse epidermal stem cells proceed through the cell cycle. J Cell Physiol 2003; 195: 194–201.

    Article  CAS  PubMed  Google Scholar 

  13. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A . Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999; 97: 703–716.

    Article  CAS  PubMed  Google Scholar 

  14. Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 1994; 13: 1071–1082.

    Article  CAS  PubMed  Google Scholar 

  15. Ema H, Takano H, Sudo K, Nakauchi H . In vitro self-renewal division of hematopoietic stem cells. J Exp Med 2000; 192: 1281–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Uchida N, Dykstra B, Lyons KJ, Leung FY, Eaves CJ . Different in vivo repopulating activities of purified hematopoietic stem cells before and after being stimulated to divide in vitro with the same kinetics. Exp Hematol 2003; 31: 1338–1347.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng T . Cell cycle inhibitors in normal and tumor stem cells. Oncogene 2004; 23: 7256–7266.

    Article  CAS  PubMed  Google Scholar 

  18. Classon M, Harlow E . The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2002; 2: 910–917.

    Article  CAS  PubMed  Google Scholar 

  19. Serrano M, Hannon GJ, Beach D . A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993; 366: 704–707.

    Article  CAS  PubMed  Google Scholar 

  20. Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ . Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol 1995; 15: 2672–2681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Welcker M, Lukas J, Strauss M, Bartek J . p21WAF1/CIP1 mutants deficient in inhibiting cyclin-dependent kinases (CDKs) can promote assembly of active cyclin D/CDK4(6) complexes in human tumor cells. Cancer Res 1998; 58: 5053–5056.

    CAS  PubMed  Google Scholar 

  22. Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 2001; 413: 86–91.

    Article  CAS  PubMed  Google Scholar 

  23. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 2006; 443: 421–426.

    Article  CAS  PubMed  Google Scholar 

  24. Latres E, Malumbres M, Sotillo R, Martin J, Ortega S, Martin-Caballero J et al. Limited overlapping roles of P15(INK4b) and P18(INK4c) cell cycle inhibitors in proliferation and tumorigenesis. EMBO J 2000; 19: 3496–3506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S et al. CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 1998; 12: 2899–2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuan Y, Shen H, Franklin DS, Scadden DT, Cheng T . In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol 2004; 6: 436–442.

    Article  CAS  PubMed  Google Scholar 

  27. Zindy F, van Deursen J, Grosveld G, Sherr CJ, Roussel MF . INK4d-deficient mice are fertile despite testicular atrophy. Mol Cell Biol 2000; 20: 372–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deng C, Zhang P, Harper JW, Elledge SJ, Leder P . Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995; 82: 675–684.

    Article  CAS  PubMed  Google Scholar 

  29. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M et al. Hematopoietic stem cell quiescence maintained by p21(cip1/waf1). Science 2000; 287: 1804–1808.

    Article  CAS  PubMed  Google Scholar 

  30. Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 1996; 85: 733–744.

    Article  CAS  PubMed  Google Scholar 

  31. Cheng T, Rodrigues N, Dombkowski D, Stier S, Scadden D . Stem cell repopulation efficiency but not pool size is governed by p27. Nat Med 2000; 6: 1235–1240.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith–Wiedemann syndrome. Nature 1997; 387: 151–158.

    Article  CAS  PubMed  Google Scholar 

  33. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  34. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ . The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805–816.

    Article  CAS  PubMed  Google Scholar 

  35. Stier S, Cheng T, Forkert R, Lutz C, Dombkowski DM, Zhang JL et al. Ex vivo targeting of p21Cip1/Waf1 permits relative expansion of human hematopoietic stem cells. Blood 2003; 102: 1260–1266.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Attar E, Cohen K, Crumpacker C, Scadden D . Silencing p21(Waf1/Cip1/Sdi1) expression increases gene transduction efficiency in primitive human hematopoietic cells. Gene Therapy 2005; 12: 1444–1452.

    Article  CAS  PubMed  Google Scholar 

  37. Miyake N, Brun ACM, Magnusson M, Scadden DT, Karlsson S . Hematopoietic stem cell expansion by HoxB4 is greatly enhanced in p21 deficient stem cells. Blood 2004; 104: 469a.

    Google Scholar 

  38. van Os R, Kamminga LM, Ausema A, Bystrykh LV, Draijer DP, van Pelt K et al. A limited role for p21Cip1/Waf1 in maintaining normal hematopoietic stem cell functioning. Stem Cells 2007; 25: 836–843.

    Article  CAS  PubMed  Google Scholar 

  39. Bruhl T, Heeschen C, Aicher A, Jadidi AS, Haendeler J, Hoffmann J et al. p21Cip1 levels differentially regulate turnover of mature endothelial cells, endothelial progenitor cells, and in vivo neovascularization. Circ Res 2004; 94: 686–692.

    Article  PubMed  CAS  Google Scholar 

  40. Stehr W, Mercer TI, Bernal NP, Erwin CR, Warner BW . Opposing roles for p21(waf1/cip1) and p27(kip1) in enterocyte differentiation, proliferation, and migration. Surgery 2005; 138: 187–194.

    Article  PubMed  Google Scholar 

  41. Hawke TJ, Meeson AP, Jiang N, Graham S, Hutcheson K, DiMaio JM et al. p21 is essential for normal myogenic progenitor cell function in regenerating skeletal muscle. Am J Physiol Cell Physiol 2003; 285: C1019–C1027.

    Article  CAS  PubMed  Google Scholar 

  42. Kippin TE, Martens DJ, van der Kooy D . p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev 2005; 19: 756–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qiu J, Takagi Y, Harada J, Rodrigues N, Moskowitz MA, Scadden DT et al. Regenerative response in ischemic brain restricted by p21cip1/waf1. J Exp Med 2004; 199: 937–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hock H, Hamblen MJ, Rooke HM, Schindler JW, Saleque S, Fujiwara Y et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 2004; 431: 1002–1007.

    Article  CAS  PubMed  Google Scholar 

  45. Kirstetter P, Anderson K, Porse BT, Jacobsen SE, Nerlov C . Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 2006; 7: 1048–1056.

    Article  CAS  PubMed  Google Scholar 

  46. Carlesso N, Aster JC, Sklar J, Scadden DT . Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood 1999; 93: 838–848.

    CAS  PubMed  Google Scholar 

  47. Sarmento LM, Huang H, Limon A, Gordon W, Fernandes J, Tavares MJ et al. Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation. J Exp Med 2005; 202: 157–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 2007; 39: 99–105.

    Article  CAS  PubMed  Google Scholar 

  49. Fasano CA, Dimos JT, Ivanova NB, Lowry N, Lemischka IR, Temple S . shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell 2007; 1: 87–99.

    Article  CAS  PubMed  Google Scholar 

  50. Doetsch F, Verdugo JM, Caille I, Alvarez-Buylla A, Chao MV, Casaccia-Bonnefil P . Lack of the cell-cycle inhibitor p27Kip1 results in selective increase of transit-amplifying cells for adult neurogenesis. J Neurosci 2002; 22: 2255–2264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dao MA, Taylor N, Nolta JA . Reduction in levels of the cyclin-dependent kinase inhibitor p27(kip-1) coupled with transforming growth factor beta neutralization induces cell-cycle entry and increases retroviral transduction of primitive human hematopoietic cells (in process citation). Proc Natl Acad Sci USA 1998; 95: 13006–13011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng T, Shen H, Rodrigues N, Stier S, Scadden DT . Transforming growth factor beta 1 mediates cell-cycle arrest of primitive hematopoietic cells independent of p21(Cip1/Waf1) or p27(Kip1). Blood 2001; 98: 3643–3649.

    Article  CAS  PubMed  Google Scholar 

  53. Walkley CR, Fero ML, Chien WM, Purton LE, McArthur GA . Negative cell-cycle regulators cooperatively control self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 2005; 7: 172–178.

    Article  CAS  PubMed  Google Scholar 

  54. Karnezis AN, Dorokhov M, Grompe M, Zhu L . Loss of p27(Kip1) enhances the transplantation efficiency of hepatocytes transferred into diseased livers. J Clin Invest 2001; 108: 383–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Besson A, Hwang HC, Cicero S, Donovan SL, Gurian-West M, Johnson D et al. Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev 2007; 21: 1731–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Umemoto T, Yamato M, Nishida K, Yang J, Tano Y, Okano T . p57Kip2 is expressed in quiescent mouse bone marrow side population cells. Biochem Biophys Res Commun 2005; 337: 14–21.

    Article  CAS  PubMed  Google Scholar 

  57. Yamazaki S, Iwama A, Takayanagi S, Morita Y, Eto K, Ema H et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J 2006; 25: 3515–3523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Georgia S, Soliz R, Li M, Zhang P, Bhushan A . p57 and Hes1 coordinate cell cycle exit with self-renewal of pancreatic progenitors. Dev Biol 2006; 298: 22–31.

    Article  CAS  PubMed  Google Scholar 

  59. Vaccarello G, Figliola R, Cramerotti S, Novelli F, Maione R . p57Kip2 is induced by MyoD through a p73-dependent pathway. J Mol Biol 2006; 356: 578–588.

    Article  CAS  PubMed  Google Scholar 

  60. Sherr CJ, Roberts JM . CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  61. Pei XH, Bai F, Smith MD, Xiong Y . p18Ink4c collaborates with Men1 to constrain lung stem cell expansion and suppress non-small-cell lung cancers. Cancer Res 2007; 67: 3162–3170.

    Article  CAS  PubMed  Google Scholar 

  62. Bowie MB, Kent DG, Copley MR, Eaves CJ . Steel factor responsiveness regulates the high self-renewal phenotype of fetal hematopoietic stem cells. Blood 2007; 109: 5043–5048.

    Article  CAS  PubMed  Google Scholar 

  63. Yu H, Yuan Y, Shen H, Cheng T . Hematopoietic stem cell exhaustion impacted by p18INK4C and p21Cip1/Waf1 in opposite manners. Blood 2006; 107: 1200–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 2006; 443: 448–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  66. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  67. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ . Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65: 10946–10951.

    Article  CAS  PubMed  Google Scholar 

  69. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  70. Hope KJ, Jin L, Dick JE . Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004; 5: 738–743.

    Article  CAS  PubMed  Google Scholar 

  71. Jordan CT, Guzman ML, Noble M . Cancer stem cells. N Engl J Med 2006; 355: 1253–1261.

    Article  CAS  PubMed  Google Scholar 

  72. Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ . The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 1998; 396: 177–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996; 85: 707–720.

    Article  CAS  PubMed  Google Scholar 

  74. Bai F, Pei XH, Godfrey VL, Xiong Y . Haploinsufficiency of p18(INK4c) sensitizes mice to carcinogen-induced tumorigenesis. Mol Cell Biol 2003; 23: 1269–1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yuan Y, Yu H, Boyer MJ, Song X, Cao S, Shen H et al. Hematopoietic stem cells are not the direct target of spontaneous leukemic transformation in p18(INK4C)-null reconstituted mice. Cancer Res 2006; 66: 343–351.

    Article  CAS  PubMed  Google Scholar 

  76. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A . Tumor growth need not be driven by rare cancer stem cells. Science 2007; 317: 337.

    Article  CAS  PubMed  Google Scholar 

  77. Endicott JA, Noble ME, Tucker JA . Cyclin-dependent kinases: inhibition and substrate recognition. Curr Opin Struct Biol 1999; 9: 738–744.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang B, Peng ZY . Structural consequences of tumor-derived mutations in p16INK4a probed by limited proteolysis. Biochemistry 2002; 41: 6293–6302.

    Article  CAS  PubMed  Google Scholar 

  79. Noh SJ, Li Y, Xiong Y, Guan KL . Identification of functional elements of p18INK4C essential for binding and inhibition of cyclin-dependent kinase (CDK) 4 and CDK6. Cancer Res 1999; 59: 558–564.

    CAS  PubMed  Google Scholar 

  80. Guan KL, Jenkins CW, Li Y, Nichols MA, Wu X, O'Keefe CL et al. Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev 1994; 8: 2939–2952.

    Article  CAS  PubMed  Google Scholar 

  81. Pei XH, Bai F, Tsutsui T, Kiyokawa H, Xiong Y . Genetic evidence for functional dependency of p18Ink4c on Cdk4. Mol Cell Biol 2004; 24: 6653–6664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fahraeus R, Paramio JM, Ball KL, Lain S, Lane DP . Inhibition of pRb phosphorylation and cell-cycle progression by a 20-residue peptide derived from p16CDKN2/INK4A. Curr Biol 1996; 6: 84–91.

    Article  CAS  PubMed  Google Scholar 

  83. Mainprize TG, Taylor MD, Rutka JT, Dirks PB . Cip/Kip cell-cycle inhibitors: a neuro-oncological perspective. J Neurooncol 2001; 51: 205–218.

    Article  CAS  PubMed  Google Scholar 

  84. Muraoka RS, Lenferink AE, Law B, Hamilton E, Brantley DM, Roebuck LR et al. ErbB2/Neu-induced, cyclin D1-dependent transformation is accelerated in p27-haploinsufficient mammary epithelial cells but impaired in p27-null cells. Mol Cell Biol 2002; 22: 2204–2219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gao H, Ouyang X, Banach-Petrosky W, Borowsky AD, Lin Y, Kim M et al. A critical role for p27kip1 gene dosage in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci USA 2004; 101: 17204–17209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bearss DJ, Lee RJ, Troyer DA, Pestell RG, Windle JJ . Differential effects of p21(WAF1/CIP1) deficiency on MMTV-ras and MMTV-myc mammary tumor properties. Cancer Res 2002; 62: 2077–2084.

    CAS  PubMed  Google Scholar 

  87. Slingerland J, Pagano M . Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 2000; 183: 10–17.

    Article  CAS  PubMed  Google Scholar 

  88. Fan Y, Borowsky AD, Weiss RH . An antisense oligodeoxynucleotide to p21(Waf1/Cip1) causes apoptosis in human breast cancer cells. Mol Cancer Ther 2003; 2: 773–782.

    CAS  PubMed  Google Scholar 

  89. Weiss RH, Joo A, Randour C . p21(Waf1/Cip1) is an assembly factor required for platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J Biol Chem 2000; 275: 10285–10290.

    Article  CAS  PubMed  Google Scholar 

  90. Tian H, Wittmack EK, Jorgensen TJ . p21WAF1/CIP1 antisense therapy radiosensitizes human colon cancer by converting growth arrest to apoptosis. Cancer Res 2000; 60: 679–684.

    CAS  PubMed  Google Scholar 

  91. Johnson KR, Fan W . Reduced expression of p53 and p21WAF1/CIP1 sensitizes human breast cancer cells to paclitaxel and its combination with 5-fluorouracil. Anticancer Res 2002; 22: 3197–3204.

    CAS  PubMed  Google Scholar 

  92. Weiss RH . p21Waf1/Cip1 as a therapeutic target in breast and other cancers. Cancer Cell 2003; 4: 425–429.

    Article  CAS  PubMed  Google Scholar 

  93. Chen J, Willingham T, Shuford M, Nisen PD . Tumor suppression and inhibition of aneuploid cell accumulation in human brain tumor cells by ectopic overexpression of the cyclin-dependent kinase inhibitor p27KIP1. J Clin Invest 1996; 97: 1983–1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Craig C, Wersto R, Kim M, Ohri E, Li Z, Katayose D et al. A recombinant adenovirus expressing p27Kip1 induces cell cycle arrest and loss of cyclin-Cdk activity in human breast cancer cells. Oncogene 1997; 14: 2283–2289.

    Article  CAS  PubMed  Google Scholar 

  95. Kudo Y, Kitajima S, Ogawa I, Kitagawa M, Miyauchi M, Takata T . Small interfering RNA targeting of S phase kinase-interacting protein 2 inhibits cell growth of oral cancer cells by inhibiting p27 degradation. Mol Cancer Ther 2005; 4: 471–476.

    CAS  PubMed  Google Scholar 

  96. Jiang F, Caraway NP, Li R, Katz RL . RNA silencing of S-phase kinase-interacting protein 2 inhibits proliferation and centrosome amplification in lung cancer cells. Oncogene 2005; 24: 3409–3418.

    Article  CAS  PubMed  Google Scholar 

  97. Lee SH, McCormick F . Downregulation of Skp2 and p27/Kip1 synergistically induces apoptosis in T98G glioblastoma cells. J Mol Med 2005; 83: 296–307.

    Article  CAS  PubMed  Google Scholar 

  98. Timmerbeul I, Garrett-Engele CM, Kossatz U, Chen X, Firpo E, Grunwald V et al. Testing the importance of p27 degradation by the SCFskp2 pathway in murine models of lung and colon cancer. Proc Natl Acad Sci USA 2006; 103: 14009–14014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH RO1 Grant HL70561 (TC) and American Heart Association Pre-Doctoral Fellowship 0615354U (MB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyer, M., Cheng, T. The CDK inhibitors: potential targets for therapeutic stem cell manipulations?. Gene Ther 15, 117–125 (2008). https://doi.org/10.1038/sj.gt.3303064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303064

Keywords

This article is cited by

Search

Quick links