Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association of white blood cell count with systolic blood pressure within the normotensive range

Abstract

Hypertension and inflammation promote cardiovascular disease (CVD). Even high normal systolic blood pressure (SBP) is associated with increased CVD risk. We assessed the relationship of elevated SBP within the normotensive range and white blood cell (WBC) count. This is a cross-sectional study of 3484 white asymptomatic individuals (mean age: 43±8 years, 79% males) without hypertension with SBP<140 mm Hg. White blood cell count 75th percentile (8.35 × 109 cells/l) was considered cutoff for elevated WBC. Subjects were classified into three levels of SBP (first: <120 mm Hg, n=1176, 34%; second: 120–129 mm Hg, n=1654, 47%; third: 130–139 mm Hg, n=654, 19%). Mean WBC count increased linearly across SBP categories (first: 6.14±1.54, second: 6.20±1.52, third: 6.41±1.62, P=0.02 for trend). There was a linear increase in prevalence of elevated WBC across higher SBP categories (22, 24 and 28%, P=0.02). As compared to those with SBP<120 mm Hg, in multivariate linear regression analyses (adjusting for age, gender, smoking status, diabetes, body mass index, physical activity, cholesterol/high-density lipoprotein cholesterol ratio) WBC count was significantly higher among participants with SBP 130–139 mm Hg (regression coefficient: 2.64, 95% confidence interval: 1.04–4.24, P=0.001). Odds ratio for prevalence of elevated WBC with SBP<120 mm Hg as reference group was 1.14 (0.92–1.41) for SBP 120–129 mm Hg and 1.50 (1.15–1.92) for SBP 130–139 mm Hg. In conclusion, Higher SBP within the normotensive range is also associated with elevated WBC count. Further studies are needed to clarify the role of inflammation in high normal SBP and associated CVD risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Chobanian A, Bakris G, Black H, Cushman WC, Green LA, Izzo JL et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure. JAMA 2003; 289: 2560–2572.

    Article  CAS  PubMed  Google Scholar 

  2. Chon H, Gaillard C, van der Meijden BB, Digstelbloem HM, Kraaijenhagen RJ, van Leenen D et al. Broadly altered gene expression in blood leukocytes in essential hypertension is absent during treatment. Hypertension 2004; 43: 947–951.

    Article  CAS  PubMed  Google Scholar 

  3. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Age-specific relevance of casual blood pressure to vascular mortality. Lancet 2002; 360: 1903–1913.

    Article  PubMed  Google Scholar 

  4. Vasan RS, Larson MG, Leip EP, Evans JC, O'Donnell CJ, Kannel WB et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med 2001; 345 (18): 1291–1297.

    Article  CAS  PubMed  Google Scholar 

  5. Kannel WB, Anderson K, Wilson PW . White blood cell count and cardiovascular disease. Insights from the Framingham Study. JAMA 1992; 267: 1253–1256.

    Article  CAS  PubMed  Google Scholar 

  6. Zalokar JB, Richard JL, Claude JR . Leukocyte count, smoking and myocardial infarction. N Engl J Med 1981; 304: 465–468.

    Article  CAS  PubMed  Google Scholar 

  7. Friedman GD, Klatsky AL, Siegelaub AB . The leukocyte count as a predictor of myocardial infarction. N Engl J Med 1974; 290: 1275–1278.

    Article  CAS  PubMed  Google Scholar 

  8. Lee CD, Folsom AR, Nieto FJ, Chambless LE, Shahar E, Wolfe DA . White blood cell count and incidence of coronary heart disease and ischemic stroke and mortality from cardiovascular disease in African-American and White men and women: atherosclerosis risk in communities study. Am J Epidemiol 2001; 154: 758–764.

    Article  CAS  PubMed  Google Scholar 

  9. Mehta JL, Nichols WW, Mehta P . Neutrophils as potential participants in acute myocardial ischemia: relevance to reperfusion. J Am Coll Cardiol 1988; 11: 1309–1316.

    Article  CAS  PubMed  Google Scholar 

  10. Ross R . Atherosclerosis-an inflammatory disease. N Engl J Med 1999; 340: 115–126.

    Article  CAS  PubMed  Google Scholar 

  11. Alexander RW . Inflammation and coronary artery disease. N Engl J Med 1994; 331: 468–469.

    Article  CAS  PubMed  Google Scholar 

  12. Mugge A, Lopez JA . Do leukocytes have a role in hypertension? Hypertension 1991; 17: 331–333.

    Article  CAS  PubMed  Google Scholar 

  13. Sinisalo J, Paronen J, Mattila KJ, Syrjala M, Alfthan G, Palosuo T et al. Relation of inflammation to vascular function in patients with coronary heart disease. Atherosclerosis 2000; 149: 403–411.

    Article  CAS  PubMed  Google Scholar 

  14. Ross R . The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801–809.

    Article  CAS  PubMed  Google Scholar 

  15. Boyle JJ . Association of coronary plaque rupture and atherosclerotic inflammation. J Pathol 1997; 181: 93–99.

    Article  CAS  PubMed  Google Scholar 

  16. Friedman GD, Selby JV, Quesenberry Jr CP . The leukocyte count: a predictor of hypertension. J Clin Epidemiol 1990; 43: 907–911.

    Article  CAS  PubMed  Google Scholar 

  17. Panza JA, Quyyumi AA, Brush Jr JE, Epstein SE . Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323: 22–27.

    Article  CAS  PubMed  Google Scholar 

  18. Bautista LE, Lopez-Jaramillo P, Vera LM, Casas JP, Otero AP, Guaracao AI . Is C-reactive protein an independent risk factor for essential hypertension. J Hypertens 2001; 19: 857–861.

    Article  CAS  PubMed  Google Scholar 

  19. Gillum RF, Mussolino ME . White blood cell count and hypertension incidence. The NHANES 1 Epidemiological Follow-up Study. J Clin Epidemiol 1994; 47: 911–919.

    Article  CAS  PubMed  Google Scholar 

  20. Sesso H, Buring J, Rifai N, Blake GJ, Gaziano JM, Ridker PM . C-reactive protein and the risk of developing hypertension. JAMA 2003; 290: 2945–2951.

    Article  CAS  PubMed  Google Scholar 

  21. Bautista LE, Vera LM, Arenas IA, Gamarra G . Independent association between inflammatory markers (C-reactive protein, interleukin-6 and TNF-α) and essential hypertension. J Hum Hypertens 2005; 19 (2): 149–154.

    Article  CAS  PubMed  Google Scholar 

  22. Schillaci G, Pirro M, Gemelli F, Pasqualini L, Vaudo G, Marchesi S et al. Increased C-reactive protein concentrations in never-treated hypertension: the role of systolic and pulse pressures. J Hypertens 2003; 21 (10): 1841–1846.

    Article  CAS  PubMed  Google Scholar 

  23. Abramson J, Weintraub W, Vaccarino V . Association between pulse pressure and C-reactive protein among apparently healthy US adults. Hypertension 2002; 39: 197–202.

    Article  CAS  PubMed  Google Scholar 

  24. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN et al. Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension 2005; 45: 142–161.

    Article  CAS  PubMed  Google Scholar 

  25. Bautista LE, Atwood JE, O'Malley PG, Taylor AJ . Association between C-reactive protein and hypertension in healthy middle-aged men and women. Coron Artery Dis 2004; 15 (6): 331–336.

    Article  PubMed  Google Scholar 

  26. Corre F, Lellouch J, Schwartz D . Smoking and leukocyte counts. Results of an epidemiological survey. Lancet 1971; 2: 632–634.

    Article  CAS  PubMed  Google Scholar 

  27. Petitti DB, Kipp H . The leukocyte count: associations with intensity of smoking and persistence of effect after quitting. Am J Epidemiol 1986; 123: 89–95.

    Article  CAS  PubMed  Google Scholar 

  28. Shankar A, Kelin B, Klein R . Relationship between white blood cell count and incident hypertension. Am J Hypertens 2004; 17: 233–239.

    Article  PubMed  Google Scholar 

  29. Nakanishi N, Sato M, Shirai K, Suzuki K, Tatara K . White blood cell count as a risk factor for hypertension; a study of Japanese male office workers. J Hypertens 2002; 20: 851–857.

    Article  CAS  PubMed  Google Scholar 

  30. Ernst E, Hammerschmidt DE, Bagge U, Matrai A, Dormandy JA . Leukocytes and the risk of ischemic diseases. JAMA 1987; 257: 2318–2324.

    Article  CAS  PubMed  Google Scholar 

  31. Dinerman JL, Mehta JL, Saldeen TG, Emerson S, Wallin R, Davda R et al. Increased neutrophil elastase release in unstable angina pectoris and acute myocardial infarction. J Am Coll Cardiol 1990; 15: 1559–1563.

    Article  CAS  PubMed  Google Scholar 

  32. Ross R . The pathogenesis of atherosclerosis – An update. N Engl J Med 1986; 314: 488–500.

    Article  CAS  PubMed  Google Scholar 

  33. Pontremoli S, Salamino F, Sparatore B, De Tullio R, Patrone M, Tizianello A et al. Enhanced activation of the respiratory burst oxidase in neutrophils from hypertensive patients. Biochem Biophys Res Commun 1989; 158: 966–972.

    Article  CAS  PubMed  Google Scholar 

  34. Bautista LE . Inflammation, endotheliail dysfunction, and the risk of high blood pressure: epidemiologic and biological evidence. J Hum Hypertens 2003; 17: 223–230.

    Article  CAS  PubMed  Google Scholar 

  35. Weiss SJ, LoBuglio AF . Biology of disease: phagocyte generated oxygen metabolites and cellular injury. Lab Invest 1982; 47: 5–18.

    CAS  PubMed  Google Scholar 

  36. Ohlstein EH, Nichols AJ . Rabbit polymorphonuclear neutrophills elicit endothelium-dependent contraction in vascular smooth muscle. Circ Res 1989; 65: 917–924.

    Article  CAS  PubMed  Google Scholar 

  37. Whorton AR, Montgomery ME, Kent RS . Effect of hydrogen peroxide on prostaglandin production and cellular integrity in culture porcine aortic endothelial cells. J Clin Invest 1985; 76: 295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Katusic ZS, Vanhoutte PM . Superoxide anion is an endothelium-derived contracting factor. Am J Physiol 1989; 257: H33–H37.

    CAS  PubMed  Google Scholar 

  39. Hingorani AD, Cross J, Kharbanda RK, Mullen MJ, Bhagat K, Taylor M et al. Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation 2000; 102: 994–999.

    Article  CAS  PubMed  Google Scholar 

  40. Dzau VJ, Gonzalez D, Kaempfer C, Dubin D, Wintroub BU . Human neutrophils release serine proteases capable of activating prorenin. Circ Res 1987; 60: 595–601.

    Article  CAS  PubMed  Google Scholar 

  41. Wintroub BU, Klickstein LB, Dzau VJ, Watt KW . Granulocyte–angiotensin system: identification of angiotensinogen as the plasma protein substrate of leukocyte cathepsin G. Biochemistry 1984; 23: 227–232.

    Article  CAS  PubMed  Google Scholar 

  42. Harlan JM . Lekocyte–endothelial interactions. Blood 1985; 65: 513–525.

    CAS  PubMed  Google Scholar 

  43. Ito BR, Schmid-Schönbein G, Engler RL . Effect of leukocyte activation on myocardial vascular resistance. Blood Vessels 1990; 16: 145–166.

    CAS  Google Scholar 

  44. Dinerman JL, Mehta JL . Endothelial, platelet and leukocyte interaction in ischemic heart disease: insights into potential mechanisms and their clinical relevance. J Am Coll Cardiol 1990; 16: 207–222.

    Article  CAS  PubMed  Google Scholar 

  45. Zucker MB, Nachmias VT . Platelet activation. Arteriosclerosis 1985; 5: 2–18.

    Article  CAS  PubMed  Google Scholar 

  46. Kuchel O . The autonomic nervous system and blood pressure regulation in human hypertension. In: Genest J, Kuchal O, Hamet P, Cantin M (eds). Hypertension: Physiopathology and Treatment, 2nd edn. McGraw-Hill: New York, 1983 pp 140–160.

    Google Scholar 

  47. Ryan SM, Waack BJ, Weno BL, Heistad DD . Increases in pulse pressure impair acetylcholine-induced vascular relaxation. Am J Physiol 1995; 268: H359–H363.

    CAS  PubMed  Google Scholar 

  48. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA . Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 2000; 28: 1456–1462.

    Article  CAS  PubMed  Google Scholar 

  49. Nakanishi N, Yoshida H, Okamoto M, Matsuo Y, Suzuki K, Tatara K . Association of alcohol consumption with white blood cell count: a study of Japanese male office workers. J Intern Med 2003; 253 (3): 367–374.

    Article  CAS  PubMed  Google Scholar 

  50. Guidelines Subcommittee. 1999 World Health Organization-International Society of Hypertension guidelines for the management of hypertension. J Hypertens 1999; 17: 151–183.

Download references

Acknowledgements

This work was supported by an unrestricted educational grant from the Maryland Athletic Club Charitable Foundation, Lutherville, MD, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R S Blumenthal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orakzai, R., Orakzai, S., Nasir, K. et al. Association of white blood cell count with systolic blood pressure within the normotensive range. J Hum Hypertens 20, 341–347 (2006). https://doi.org/10.1038/sj.jhh.1001992

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001992

Keywords

This article is cited by

Search

Quick links