Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Biotechnical Methods Section BTS
  • Published:

Biotechnical Methods Section (BTS)

Comparison of nested competitive RT-PCR and real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21) positive acute myelogenous leukemia

Abstract

The chromosomal translocation t(8;21)(q22;q22) is one of the most frequent karyotypic aberrations in acute myeloid leukemia (AML) and results in a chimeric fusion transcript AML1/MTG8. Since AML1/MTG8 fusion transcripts remain detectable by RT-PCR in t(8;21) AML patients in long-term hematological remission, quantitative assessment of AML1/MTG8 transcripts is necessary for the monitoring of minimal residual disease (MRD) in these patients. Competitive RT-PCR and recently real-time RT-PCR are increasingly used for detection and quantification of leukemia specific fusion transcripts. For the direct comparison of both methods we cloned a 42 bp DNA fragment into the original AML1/MTG8 sequence. The resulting molecule was used as an internal competitor for our novel competitive nested RT-PCR for AML1/MTG8 and as an external standard for the generation of AML1/MTG8 standard curves in a real-time PCR assay. Using this standard molecule for both PCR techniques, we compared their sensitivity, linearity and reproducibility. Both methods were comparable with regard to all parameters tested irrespective of analyzing serial dilutions of plasmids, cell lines or samples from t(8;21) positive AML patients at different stages of the disease. Therefore, both techniques can be recommended for the monitoring of MRD in these particular AML patients. However, the automatization of the real-time PCR technique offers some technical advantages

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Berger R, Flandrin G, Bernheim A, Le Coniat M, Vecchione D, Pacot A, Derre J, Daniel MT, Valensi F, Sigaux F, Ochoa Noguera ME . Cytogenetic studies on 519 consecutive de novo acute nonlymphocytic leukemias Cancer Genet Cytogenet 1987 29: 9–21

    Article  CAS  Google Scholar 

  2. Fenaux P, Preudhomme C, Lai JL, Morel P, Beuscart R, Bauters F . Cytogenetics and their prognostic value in de novo acute myeloid leukemia: a report on 283 cases Br J Haematol 1989 73: 61–67

    Article  CAS  Google Scholar 

  3. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S, Lasher R, Trujillo J, Rowley J, Drabkin H . Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt Blood 1992 80: 1825–1831

    CAS  PubMed  Google Scholar 

  4. Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y, Kamada N, Ohki M . The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript EMBO J 1993 12: 2715–2721

    Article  CAS  Google Scholar 

  5. Tighe JE, Daga A, Calabi F . Translocation breakpoints are clustered on both chromosome 8 and chromosome 21 in the t(8;21) of acute myeloid leukemia Blood 1993 81: 592–596

    CAS  PubMed  Google Scholar 

  6. Bitter MA, Le Beau MM, Rowley JD, Larson RA, Golomb HM, Vardiman JW . Associations between morphology, karyotype and clinical features in myeloid leukemias Hum Pathol 1987 18: 211–225

    Article  CAS  Google Scholar 

  7. Bloomfield CD, Lawrence D, Byrd JC, Carrol A, Pettenati MJ, Tantravahi R, Patil SR, Davey FR, Berg DT, Schiffer CA, Arthur DC, Mayer RJ . Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype Cancer Res 1998 58: 4173–4179

    CAS  PubMed  Google Scholar 

  8. Heil G, Krauter J, Raghavachar A, Hoelzer D, Hossfeld D, Mertelsmann R, Noens L, Schlimok G, Port M, Schwab G, Ganser A . Risk-adapted induction and consolidation therapy including autologous peripheral blood stem cell transplantation (PBSCT) in adult de novo AML patients Blood 1997 90: 508a (Abstr.)

    Google Scholar 

  9. Fenaux P, Lai JL, Preudhomme C, Jouet JP, Deminatti M, Bauters F . Is translocation (8;21) a ‘favorable’ cytogenetic rearrangement in acute myeloid leukemia? Nouv Rev Fr Hematol 1990 32: 179–182

    CAS  PubMed  Google Scholar 

  10. Chang KS, Fan YH, Stass SA, Estey EH, Wang G, Trujillo JM, Erickson P, Drabkin H . Expression of AML1-ETO fusion transcripts and detection of minimal residual disease in t(8;21)-positive acute myeloid leukemia Oncogene 1993 8: 983–988

    CAS  PubMed  Google Scholar 

  11. Downing JR, Head DR, Curcio Brint AM, Hulshof MG, Motroni TA, Raimondi SC, Carroll AJ, Drabkin HA, Willman C, Theil KS, Civin CI, Erickson P . An AML1/ETO fusion transcript is consistently detected by RNA-based polymerase chain reaction in acute myelogenous leukemia containing the (8;21)(q22;q22) translocation Blood 1993 81: 2860–2865

    CAS  PubMed  Google Scholar 

  12. Nucifora G, Larson RA, Rowley JD . Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission Blood 1993 82: 712–715

    CAS  PubMed  Google Scholar 

  13. Jurlander J, Caligiuri MA, Ruutu T, Baer MR, Strout MP, Oberkircher AR, Hoffmann L, Ball ED, Frei Lahr DA, Christiansen NP, Block AM, Knuutila S, Herzig GP, Bloomfield CD . Persistence of the AML1/ETO fusion transcript in patients treated with allogeneic bone marrow transplantation for t(8;21) leukemia Blood 1996 88: 2183–2191

    CAS  PubMed  Google Scholar 

  14. Miyamoto T, Nagafuji K, Akashi K, Harada M, Kyo T, Akashi T, Takenaka K, Mizuno S, Gondo H, Okamura T, Dohy H, Niho Y . Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia Blood 1996 87: 4789–4796

    CAS  PubMed  Google Scholar 

  15. Elmaagacli AH, Beelen DW, Stockova J, Trzensky S, Kroll M, Schaefer UW, Stein C, Opalka B . Detection of AML1/ETO fusion transcripts in patients with t(8;21) acute myeloid leukemia after allogeneic bone marrow transplantation or peripheral blood progenitor cell transplantation Blood 1997 90: 3230–3231

    CAS  PubMed  Google Scholar 

  16. Kusec R, Laczika K, Knobl P, Friedl J, Greinix H, Kahls P, Linkesch W, Schwarzinger I, Mitterbauer G, Purtscher B, Haas O, Lechner K, Jaeger K . AML 1/ETO fusion mRNA can be detected in remission blood samples of all patients with t(8;21) acute myeloid leukemia after chemotherapy or autologous bone marrow transplantation Leukemia 1994 8: 735–739

    CAS  PubMed  Google Scholar 

  17. Muto A, Mori S, Matsushita H, Awaya N, Ueno H, Takayama N, Okamoto S, Kizaki M, Ikeda Y . Serial quantification of minimal residual disease of t(8;21) acute myelogenous leukaemia with RT-competitive PCR assay Br J Haematol 1996 95: 85–94

    Article  CAS  Google Scholar 

  18. Tobal K, Yin JA . Monitoring of minimal residual disease by quantitative reverse transcriptase-polymerase chain reaction for AML 1-MTG8 transcripts in AML-M2 with t(8;21) Blood 1996 88: 3704–3709

    CAS  PubMed  Google Scholar 

  19. Tobal K, Liu Yin JA . Molecular monitoring of minimal residual disease in acute myeloblastic leukemia with t(8;21) by RT-PCR Leuk Lymphoma 1998 31: 115–120

    Article  CAS  Google Scholar 

  20. Siebert PD, Larrick JW . Competitive PCR Nature 1992 359: 557–558

    Article  CAS  Google Scholar 

  21. Cross NCP, Feng L, Chase A, Bungey J, Hughes TP, Goldman JM . Competitive polymerase chain reaction to estimate the number of of bcr-abl transcripts in chronic myeloid leukemia patients after bone marrow transplantation Blood 1993 82: 1929–1936

    CAS  PubMed  Google Scholar 

  22. Meijerink JP, Smetsers TF, Raemaekers JM, Bogman MJ, De Witte T, Mensink EJ . Quantitation of follicular non-Hodgkin's lymphoma cells carrying t(14;18) by competitive polymerase chain reaction Br J Haematol 1993 84: 250–256

    Article  CAS  Google Scholar 

  23. Brisco MJ, Condon J, Hughes E, Neoh SH, Sykes PJ, Seshadri R, Toogood I, Waters K, Tauro G, Ekert H, Morley AA . Outcome prediction in childhood acute lymphoblastic leukaemia by molecular quantification of residual disease at the end of induction Lancet 1994 343: 196–200

    Article  CAS  Google Scholar 

  24. Cross NCP . Quantitative PCR techniques and applications Br J Haematol 1995 89: 693–697

    Article  CAS  Google Scholar 

  25. Holland PM, Abramson RD, Watson R, Gelfand DH . Detection of specific polymerase chain products by utilizing the 5′ to 3′ exonuclease activity of termus aquaticus DNA polymerase Proc Natl Acad Sci USA 1991 88: 7276–7280

    Article  CAS  Google Scholar 

  26. Förster VT . Zwischenmolekulare Energiewanderung und Fluoreszenz Ann Physics (Leipzig) 1948 2: 55–75

    Article  Google Scholar 

  27. Marcucci G, Livak KJ, Bi W, Strout MP, Bloomfield CD, Caligiuri MA . Detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia using a novel quantitative reverse transcription polymerase chain reaction assay Leukemia 1998 12: 1482–1489

    Article  CAS  Google Scholar 

  28. Mensink E, van de Locht A, Schattenberg A, Linders E, Schaap N, Geurts van Kessel A, De Witte T . Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukemia using real-time quantitative RT-PCR Br J Haematol 1998 102: 768–774

    Article  CAS  Google Scholar 

  29. Luthra R, McBride JA, Cabanillas F, Sarris A . Novel 5′ exonuclease based real time PCR assay for the detection of t(14;18)(q32;q21) in patients with follicular lymphoma Am J Pathol 1998 153: 63–68

    Article  CAS  Google Scholar 

  30. Gerard CJ, Olsson K, Ramanathan R, Reading C, Hanania EG . Improved quantitation of minimal residual disease in multiple myeloma using real-time polymerase chain reaction and plasmid-DNA complementarity determinig region III standards Cancer Res 1998 58: 3957–3964

    CAS  PubMed  Google Scholar 

  31. Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, Roovers E, van der School CE, van Dongen JJ . Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes Leukemia 1998 12: 2006–2014

    Article  CAS  Google Scholar 

  32. Gibson UEM, Heid CA, Williams MP . A novel method for real time quantitative RT-PCR Genome Res 1996 6: 995–1001

    Article  CAS  Google Scholar 

  33. Heid CA, Stevens J, Livak KJ, Williams MP . Real time quantitative PCR Genome Res 1996 6: 986–994

    Article  CAS  Google Scholar 

  34. Asou H, Tashiro S, Hamamoto K, Otsuji A, Kita K, Kamada N . Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8;21 chromosome translocation Blood 1991 77: 2031–2036

    CAS  PubMed  Google Scholar 

  35. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R . NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3) Blood 1991 77: 1080–1086

    CAS  PubMed  Google Scholar 

  36. Krauter J, Peter W, Pascheberg U, Heinze B, Bergmann L, Hoelzer D, Lübbert M, Schlimok G, Arnold R, Kirchner H, Port M, Ganser A, Heil G . Detection of karyotypic aberrations in acute myeloblastic leukemia: a prospective comparison between PCR/FISH and standard cytogenetics in 140 patients with de novo AML Br J Haematol 1998 103: 72–78

    Article  CAS  Google Scholar 

  37. Miller WH, Levine K, DeBlasio A, Frankel SR, Dmitrovsky E, Warrell RP . Detection of minimal residual disease in acute promyelocytic leukemia by a reverse transcription polymerase chain reaction assay for the PML/RAR-alpha fusion mRNA Blood 1993 82: 1689–1694

    CAS  PubMed  Google Scholar 

  38. Miyamoto T, Nagafuji K, Harada M, Eto T, Fujisaki T, Kubota A, Akashi K, Mizuno S, Takenaka K, Kanaji T et al. Quantitative analysis of AML1/ETO transcripts in peripheral blood stem cell harvests from patients with t(8;21) acute myelogenous leukaemia Br J Haematol 1995 91: 132–138

    Article  CAS  Google Scholar 

  39. Becker AM, Hahlbrock . K Absolute mRNA quantification using the polymerase chain reaction (PCR): a novel approach by a PCR aided transcript titration assay (PATTY) Nucleic Acids Res 1989 17: 9437–9446

    Article  Google Scholar 

  40. Desjardin LE, Chen Y, Perkins MD, Teixeira L, Cave MD, Eisenach KD . Comparison of the ABI 7700 system (TaqMan) and competitive PCR for quantification of IS6110 DNA in sputum during treatment of tuberculosis J Clin Microbiol 1998 36: 1964–1968

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Krebshilfe [10-1217-He1] and a grant from the Dr Wilhelm-Kempe-Stiftung. The authors wish to thank Kerstin Görlich, Elvira Lux and Dagmar Reile for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wattjes, M., Krauter, J., Nagel, S. et al. Comparison of nested competitive RT-PCR and real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21) positive acute myelogenous leukemia. Leukemia 14, 329–335 (2000). https://doi.org/10.1038/sj.leu.2401679

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401679

Keywords

This article is cited by

Search

Quick links