Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Molecular Cytogenetics

Detection of E2A translocations in leukemias via fluorescence in situ hybridization

Abstract

Three rearrangements in ALL disrupt E2A and create E2A fusion proteins: the t(1;19)(q23;p13) and E2A-PBX1, t(17;19)(q22;p13) and E2A-HLF and a cryptic inv(19)(p13;q13) and E2A-FB1. While E2A is fused to PBX1 in most ALLs with a t(1;19), 5–10% of cases have translocations that appear identical, but do not affect E2A or PBX1. Because more intensive therapy improves the outcome of patients with E2A-PBX1positive (1;19) translocations, it is critical to identify this subset of patients so that appropriate therapy can be administered. In addition, there are balanced and unbalanced variants of the t(1;19) and controversy exists regarding the clinical significance of this distinction. We have developed a two-color fluorescence in situhybridization assay that accurately detects E2A translocations in metaphase and interphase cells, distinguishes between balanced and unbalanced variants and identifies patients with a t(1;19) who lack E2A-PBX1 fusion. We found that clonal microheterogeneity is common in patients with E2A translocations and most patients have mixtures of cells with balanced and unbalanced translocations, suggesting that this distinction represents two ends of a continuum rather than distinct biological entities. These reagents should have widespread clinical utility and be useful for translational and basic research studies involving E2Atranslocations and this region of chromosome 19p13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Rabbitts TH . Chromosomal translocations in human cancer Nature 1994 372: 143–149

    Article  CAS  PubMed  Google Scholar 

  2. Pui CH . Childhood leukemias New Engl J Med 1995 332: 1618–1630

    Article  CAS  PubMed  Google Scholar 

  3. Carroll AJ, Crist WM, Parmley RT, Roper M, Cooper MD, Finley WH . Pre-B cell leukemia associated with chromosome translocation 1;19 Blood 1984 63: 721–724

    CAS  PubMed  Google Scholar 

  4. Michael PM, Levin MD, Garson OM . Translocation 1;19 – a new cytogenetic abnormality in acute lymphocytic leukemia Cancer Genet Cytogenet 1984 12: 333–341

    Article  CAS  PubMed  Google Scholar 

  5. Mellentin JD, Murre C, Donlon TA, McCaw PS, Smith SD, Carroll AJ, McDonald ME, Baltimore D, Cleary ML . The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias Science 1989 246: 379–382

    Article  CAS  PubMed  Google Scholar 

  6. Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD, Cleary ML . Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor Cell 1990 60: 535–545

    Article  CAS  PubMed  Google Scholar 

  7. Kamps MP, Murre C, Sun XH, Baltimore D . A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL Cell 1990 60: 547–555

    Article  CAS  PubMed  Google Scholar 

  8. Hunger SP, Galili N, Carroll AJ, Crist WM, Link MP, Cleary ML . The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias Blood 1991 77: 687–693

    CAS  PubMed  Google Scholar 

  9. Privitera E, Kamps MP, Hayashi Y, Inaba T, Shapiro LH, Raimondi SC, Behm F, Hendershot L, Carroll AJ, Baltimore D et al. Different molecular consequences of the 1;19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia Blood 1992 79: 1781–1788

    CAS  PubMed  Google Scholar 

  10. Hunger SP, Ohyashiki K, Toyama K, Cleary ML . Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia Genes Dev 1992 6: 1608–1620

    Article  CAS  PubMed  Google Scholar 

  11. Inaba T, Roberts WM, Shapiro LH, Jolly KW, Raimondi SC, Smith SD, Look AT . Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia Science 1992 257: 531–534

    Article  CAS  PubMed  Google Scholar 

  12. Brambillasca F, Mosna G, Colombo M, Rivolta A, Caslini C, Minuzzo M, Giudici G, Mizzi L, Biondi A, Privitera E . Identification of a novel molecular partner of the E2A gene in childhood leukemia Leukemia 1999 13: 369–375

    Article  CAS  PubMed  Google Scholar 

  13. Crist WM, Carroll AJ, Shuster JJ, Behm FG, Whitehead M, Vietti TJ, Look AT, Mahoney D, Ragab A, Pullen DJ et al. Poor prognosis of children with pre-B acute lymphoblastic leukemia is associated with the t(1;19)(q23;p13): a Pediatric Oncology Group study Blood 1990 76: 117–122

    CAS  PubMed  Google Scholar 

  14. Raimondi SC, Behm FG, Roberson PK, Williams DL, Pui CH, Crist WM, Look AT, Rivera GK . Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19) J Clin Oncol 1990 8: 1380–1388

    Article  CAS  PubMed  Google Scholar 

  15. Pui CH, Raimondi SC, Hancock ML, Rivera GK, Ribeiro RC, Mahmoud HH, Sandlund JT, Crist WM, Behm FG . Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19) (q23; p13) or its derivative J Clin Oncol 1994 12: 2601–2606

    Article  CAS  PubMed  Google Scholar 

  16. Uckun FM, Sensel MG, Sather HN, Gaynon PS, Arthur DC, Lange BJ, Steinherz PG, Kraft P, Hutchinson R, Nachman JB, Reaman GH, Heerema NA . Clinical significance of translocation t(1;19) in childhood acute lymphoblastic leukemia in the context of contemporary therapies: a report from the Children's Cancer Group J Clinical Oncol 1998 16: 527–535

    Article  CAS  Google Scholar 

  17. Shikano T, Kaneko Y, Takazawa M, Ueno N, Ohkawa M, Fujimoto T . Balanced and unbalanced 1;19 translocation-associated acute lymphoblastic leukemias Cancer 1986 58: 2239–2243

    Article  CAS  PubMed  Google Scholar 

  18. Secker-Walker LM, Berger R, Fenaux P, Lai JL, Nelken B, Garson M, Michael PM, Hagemeijer A, Harrison CJ, Kaneko Y, Rubin CM . Prognostic significance of the balanced t(1;19) and unbalanced der(19)t(1;19) translocations in acute lymphoblastic leukemia Leukemia 1992 6: 363–369

    CAS  PubMed  Google Scholar 

  19. Borowitz MJ, Hunger SP, Carroll AJ, Shuster JJ, Pullen DJ, Steuber CP, Cleary ML . Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study Blood 1993 82: 1086–1091

    CAS  PubMed  Google Scholar 

  20. Mellentin JD, Nourse J, Hunger SP, Smith SD, Cleary ML . Molecular analysis of the t(1;19) breakpoint cluster region in pre-B cell acute lymphoblastic leukemias Genes Chromosomes Cancer 1990 2: 239–247

    Article  CAS  PubMed  Google Scholar 

  21. Hunger SP, Devaraj PE, Foroni L, Secker-Walker LM, Cleary ML . Two types of genomic rearrangements create alternative E2A-HLF fusion proteins in t(17;19)-ALL Blood 1994 83: 2970–2977

    CAS  PubMed  Google Scholar 

  22. Raimondi SC . Fluorescence in situ hybridization: molecular probes for diagnosis of pediatric neoplastic diseases Cancer Invest 2000 18: 135–147

    Article  CAS  PubMed  Google Scholar 

  23. Jack I, Seshadri R, Garson M, Michael P, Callen D, Zola H, Morley A . RCH-ACV: a lymphoblastic leukemia cell line with chromosome translocation 1;19 and trisomy 8 Cancer Genet Cytogenet 1986 19: 261–269

    Article  CAS  PubMed  Google Scholar 

  24. Ohyashiki K, Fujieda H, Miyauchi J, Ohyashiki JH, Tauchi T, Saito M, Nakazawa S, Abe K, Yamamoto K, Clark SC, Toyama K . Establishment of a novel heterotransplantable acute lymphoblastic leukemia cell line with a t(17;19) chromosomal translocation the growth of which is inhibited by interleukin-3 Leukemia 1991 5: 322–331

    CAS  PubMed  Google Scholar 

  25. Yoshinari M, Imaizumi M, Eguchi M, Ogasawara M, Saito T, Suzuki H, Koizumi Y, Cui Y, Sato A, Saisho T, Ichinohasama R, Matsubara Y, Kamada N, Iinuma K . Establishment of a novel cell line (TS-2) of pre-B acute lymphoblastic leukemia with a t(1;19) not involving the E2A gene Cancer Genet Cytogenet 1998 101: 95–102

    Article  CAS  PubMed  Google Scholar 

  26. Hunger SP, Sun T, Boswell AF, Carroll AJ, McGavran L . Hyperdiploidy and E2A-PBX1 fusion in an adult with t(1;19)+ acute lymphoblastic leukemia: case report and review of the literature Genes Chromosomes Cancer 1997 20: 392–398

    Article  CAS  PubMed  Google Scholar 

  27. Mitelman F. ISCN . An International System for Human Cytogenetic Nomenclature S Karger: Basel 1995

    Google Scholar 

  28. Ashworth LK, Batzer MA, Brandriff B, Branscomb E, de Jong P, Garcia E, Garnes JA, Gordon LA, Lamerdin JE, Lennon G, Mohrenweiser H, Olsen AS, Slezak T, Carrano AV . An integrated metric physical map of human chromosome 19 Nat Genet 1995 11: 422–427

    Article  CAS  PubMed  Google Scholar 

  29. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M . Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector Proc Natl Acad Sci USA 1992 89: 8794–8797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bain G, Engel I, Robanus Maandag EC, te Riele HP, Voland JR, Sharp LL, Chun J, Huey B, Pinkel D, Murre C . E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas Mol Cell Biol 1997 17: 4782–4791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yan W, Young AZ, Soares VC, Kelley R, Benezra R, Zhuang Y . High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice Mol Cell Biol 1997 17: 7317–7327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Loewenstern and Monfort Family Foundations to SPH and NCI Cancer Center Core Grant CA 46934. SPH is a Translational Research Grant Awardee of the Leukemia and Lymphoma Society of America. Work at LLNL was performed under the auspices of the US DOE under contract No. W-7405-ENG-48.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boomer, T., Varella-Garcia, M., McGavran, L. et al. Detection of E2A translocations in leukemias via fluorescence in situ hybridization. Leukemia 15, 95–102 (2001). https://doi.org/10.1038/sj.leu.2401988

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401988

Keywords

This article is cited by

Search

Quick links