Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on Molecular Targeted Therapy

MCL1 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis

Abstract

The MCL1 gene (myeloid cell leukemia-1) was discovered serendipitously about a decade ago and proved to be a member of the emerging BCL2 gene family. Ongoing studies of this gene provide an interesting perspective on the role of the BCL2 family in transitions in cell phenotype. Specifically, gene products that influence cell viability as a major effect (eg MCL1, BCL2 and other family members) can act as key determinants in cell proliferation, differentiation and tumorigenesis. Although they do not have a direct role in proliferation/differentiation programs, these genes can either permit these programs to proceed or prevent them. Through such effects, the BCL2 family regulates the normal flow of cells through cycles of proliferation and along various pathways of differentiation. A model is presented suggesting that this is accomplished by sustaining or inhibiting viability at critical points in the cell lifecycle. These critical points represent windows of time during which cell fate transitions are effected. They can also be visualized as windows that open or close to promote or prevent continued progression along various cell fate pathways. The pattern of BCL2 family expression at these points allows for the proliferation differentiation, and continued viability of cell types that are needed, while aborting these processes for cells that are overabundant or no longer needed. The combined action of the various family members can therefore control the fate of cells, tissues and even the organism. This mechanism involving apoptosis-related genes is readily executable, and is poised to respond to external signals through the differential regulation of BCL2 family members. As such, it plays an important role in the maintenance of tissue homeostasis and function. Alterations that affect the BCL2 family impair the capacity to control the flow of cells through these critical points, and thereby ‘leave the window open’ for cell immortalization and cancer. Targeting this family may thus provide a means of inhibiting cancer development and inducing apoptosis in tumor cells.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW . MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2 Proc Natl Acad Sci USA 1993 90: 3516–3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kozopas KM, Buchan HL, Craig RW . Improved coupling between proliferation-arrest and differentiation-induction in ML-1 human myeloblastic leukemia cells J Cell Physiol 1990 145: 575–586

    Article  CAS  PubMed  Google Scholar 

  3. Yang T, Kozopas KM, Craig RW . The intracellular distribution and pattern of expression of Mcl-1 overlap with, but are not identical to, those of Bcl-2 J Cell Biol 1995 128: 1173–1184

    Article  CAS  PubMed  Google Scholar 

  4. Yang T, Buchan HL, Townsend KJ, Craig RW . MCL-1, a member of the BCL-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation J Cell Physiol 1996 166: 523–536

    Article  CAS  PubMed  Google Scholar 

  5. Klampfer L, Zhang J, Nimer SD . GM-CSF rescues TF-1 cells from growth factor withdrawal-induced, but not differentiation-induced apoptosis: the role of Bcl-2 and Mcl-1 Cytokine 1999 11: 849–855

    Article  CAS  PubMed  Google Scholar 

  6. Wang X, Studzinski GP . Antiapoptotic action of 1,25-dihydroxyvitamin D3 is associated with increased mitochondrial MCL-1 and RAF-1 proteins and reduced release of cytochrome c Exp Cell Res 1997 235: 210–217

    Article  CAS  PubMed  Google Scholar 

  7. Sordet O, Bettaieb A, Bruey JM, Eymin B, Broin N, Ivarsson M, Garrido C, Solary E . Selective inhibition of apoptosis by TPA-induced differentiation of U937 leukemic cells Cell Death Diff 1999 6: 351–361

    Article  CAS  Google Scholar 

  8. Umezawa A, Maruyama T, Inazawa J, Imai S-I, Takano T, Hata J-I . Induction of mcl1/EAT, Bcl-2 related gene, by retinoic acid or heat shock in the human embryonal carcinoma cells, NCR-G3 Cell Struc Func 1996 21: 1–8

    Article  Google Scholar 

  9. Okita H, Umezawa A, Suzuki A, Hata J-I . Up-regulated expression of murine mcl1/EAT, a Bcl-2 related gene, in the early stage of differentiation of murine embryonal carcinoma cells and embryonic stem cells Biochem Biophys Acta 1998 1398: 335–341

    CAS  PubMed  Google Scholar 

  10. Zhou P, Qian L, Kozopas KM, Craig RW . Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions Blood 1997 89: 630–643

    Article  CAS  PubMed  Google Scholar 

  11. Reynolds JE, Yang T, Qian L, Jenkinson JD, Zhou P, Eastman A, Craig RW . Mcl-1, a member of the Bcl-2 family, delays apoptosis induced by c-Myc overexpression in Chinese hamster ovary cells Cancer Res 1994 54: 6348–6352

    CAS  PubMed  Google Scholar 

  12. Reynolds JE, Li J, Craig RW, Eastman A . BCL-2 and MCL-1 expression in Chinese hamster ovary cells inhibits intracellular acidification and apoptosis induced by staurosporine Exp Cell Res 1996 225: 430–436

    Article  CAS  PubMed  Google Scholar 

  13. Bodrug SE, Aime-Sempe C, Sata T, Krajewski S, Hanada M, Reed JC . Biochemical and functional comparisons of Mcl-1 and Bcl-2 proteins: evidence for a novel mechanism of regulating bcl-2 family protein function Cell Death Diff 1995 2: 173–182

    CAS  Google Scholar 

  14. Moulding DA, Giles RV, Spiller DG, White MR, Tidd DM, Edwards SW . Apoptosis is rapidly triggered by antisense depletion of MCL-1 in differentiating U937 cells Blood 2000 96: 1756–1763

    Article  CAS  PubMed  Google Scholar 

  15. Townsend KJ, Trusty JL, Traupman MA, Eastman A, Craig RW . Expression of the antiapoptotic MCL1 gene product is regulated by a mitogen activated protein kinase-mediated pathway triggered through microtubule disruption and protein kinase C Oncogene 1998 17: 1223–1234

    Article  CAS  PubMed  Google Scholar 

  16. Fukuchi Y, Kizaki M, Yamato K, Kawamura C, Umezawa A, Hata J, Nishihara T, Ikeda Y . Mcl-1, an early-induction molecule, modulates activin A-induced apoptosis and differentiation in CML cells Oncogene 2001 20: 704–713

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Rosengren L, Hamberger A, Haglid K . Antisense inhibiton of BCL-2 expression induced retinoic acid-mediated cell death during differentiation of human NT2N neurons J Neurochem 2001 76: 1089–1098

    Article  CAS  PubMed  Google Scholar 

  18. Wakabayashi K, Saito H, Ebinuma H, Saito Y, Takagi T, Nakamura M, Umezawa A, Hata J, Ishii H . Bcl-2 related proteins are dramatically induced at the early stage of differentiation in human liver cancer cells by a histone deacetylase inhibitor projecting an anti-apoptotic role during this period Oncol Rep 2000 7: 285–288

    CAS  PubMed  Google Scholar 

  19. Sano M, Umezawa A, Abe H, Akatsuka A, Nonaka S, Shimizu H, Fukuma M, Hata J . EAT/mcl-1 expression in the human embryonal carcinoma cells undergoing differentiation or apoptosis Exp Cell Res 2001 266: 114–125

    Article  CAS  PubMed  Google Scholar 

  20. Zhou P, Qian L, Bieszczad CK, Noelle R, Binder M, Levy NB, Craig RW . Mcl1 in transgenic mice promotes survival in a spectrum of hematopoietic cell types, allowing for immortalization in the myeloid lineage Blood 1998 92: 3226–3239

    Article  CAS  PubMed  Google Scholar 

  21. Sana M, Umezawa A, Suzuki A, Shimoda K, Fukuma M, Hata J . Involvement of EAT/mcl-1, an anti-apoptotic bcl-2-related gene, in murine embryogenesis and human development Exp Cell Res 2000 259: 127–139

    Article  CAS  Google Scholar 

  22. Rinkenberger JL, Horning S, Klocke B, Roth K, Korsmeyer SJ . Mcl-1 deficiency results in peri-implantation embryonic lethality Genes Dev 2000 14: 21–27

    Article  Google Scholar 

  23. Cory S . Regulation of lymphocyte survival by the Bcl-2 gene family Ann Rev Immunol 1995 13: 5133–5143

    Article  Google Scholar 

  24. Krajewski S, Bodrug S, Gascoyne R, Berean K, Krajewska M, Reed JC . Immunohistochemical analysis of Mcl-1 and Bcl-2 proteins in normal and neoplastic lymph nodes Am J Pathol 1994 145: 515–525

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Krajewski S, Krajewska M, Shabaik A, Wang HG, Irie S, Fong L, Reed JC . Immunohistochemical analysis of in vivo patterns of Bcl-x expression Cancer Res 1994 54: 5501–5507

    CAS  PubMed  Google Scholar 

  26. Krajewski S, Krajewska M, Shabaik A, Miyashita T, Wang HG, Reed JC . Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2 Am J Pathol 1994 145: 1323–1336

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Krajewski S, Bodrug S, Krajewska M, Shabaik A, Gascoyne R, Berean K, Reed JC . Immunohistochemical analysis of Mcl-1 protein in human tissues. Differential regulation of Mcl-1 and Bcl-2 protein production suggests a unique role for Mcl-1 in control of programmed cell death in vivo Am J Pathol 1995 146: 1309–1319

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ghia P, Boussiotis VA, Schultze JL, Cardoso AA, Dorfman DM, Gribben JG, Freedman AS, Nadler LM . Unbalanced expression of bcl-2 family proteins in follicular lymphoma: contribution of CD40 signaling in promoting survival Blood 1998 91: 244–251

    Article  CAS  PubMed  Google Scholar 

  29. Ohta K, Iwae K, Kasahara Y, Taniguchi N, Krajjewski S, Reed JC, Miyawaki T . Immunoblot analysis of cellular expression of Bcl-2 family proteins, Bcl-2, Bax, Bcl-X and Mcl-1, in human peripheral blood and lymphoid tissues Int Immunol 1995 7: 1817–1825

    Article  CAS  PubMed  Google Scholar 

  30. Tomkova H, Fujimoto W, Arata J . Expression of the bcl-2 family of genes in the course of keratinocyte differentiation Eur J Dermatol 1999 9: 191–196

    CAS  Google Scholar 

  31. Merino R, Ding L, Veis DJ, Korsmeyer SJ, Nunez G . Developmental regulation of the Bcl-2 protein and susceptibility to cell death in B lymphocytes EMBO J 1994 13: 683–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chao JR, Wang JM, Lee SF, Peng HW, Lin YH, Chou CH, Li JC, Huang HM, Chou CK, Kuo ML, Yen JJ, Yang-Yen HF . mcl-1 is an immediate-early gene activated by the granulocyte–macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response Mol Cell Biol 1998 18: 4883–4898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang HM, Huang CJ, Yen JJ . Mcl-1 is a common target of stem cell factor and interleukin-5 for apoptosis prevention activity via MEK/MAPK and PI-3K/Akt pathways Blood 2000 96: 1764–1771

    Article  CAS  PubMed  Google Scholar 

  34. Packham G, White EL, Eischen CM, Yang H, Parganas E, Ihle JN, Grillot DAM, Zambetti GP, Nunez G, Cleveland JL . Selective regulation of BCLXL by a Jak kinase-dependent pathway is bypassed in murine hematopoietic malignancies Genes Dev 1998 12: 2475–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuribara R, Kinoshita T, Miyajima A, Shinjyo T, Yoshihara T, Inukai T, Ozawa K, Look AT, Inaba T . Two distinct interleukin-3-mediated signal pathways, Ras-NFIL3 (E4BP4) and Bcl-xL, regulate the survival of murine pro-B lymphocytes Mol Cell Biol 1999 19: 2754–27662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fujise K, Zhang D, Liu J, Yeh ETH . Regulation of apoptosis and cell cycle progression by MCL1: differential role of proliferating cell nuclear antigen J Biol Chem 2000 50: 39458–39465

    Article  Google Scholar 

  37. Katoh O, Takahashi T, Kuramoto K, Mihara K, Kobayashi M, Hirata S, Watanabe H . Vascular endothelial growth factor inhibits apoptotic death in hematopoietic cells after exposure to chemotherapeutic drugs by inducing MCL1 acting as an antiapoptotic factor Cancer Res 1998 58: 5565–5569

    CAS  PubMed  Google Scholar 

  38. Leuenroth SJ, Grutkoski PS, Ayala A, Simms HH . The loss of Mcl-1 expression in human polymorphonuclear leukocytes promotes apoptosis J Leuk Biol 2000 68: 158–166

    CAS  Google Scholar 

  39. Moulding DA, Quayle JA, Hart CA, Edwards SW . Mcl-1 expression in human neutrophils: regulation by cytokines and correlation with cell survival Blood 1998 92: 2495–2502

    Article  CAS  PubMed  Google Scholar 

  40. Dibbert B, Weber M, Nikolaizik WH, Vogt P, Schoni MH, Blaser K, Simon HU . Cytokine-mediated Bax deficiency and consequent delayed neutrophil apoptosis: a general mechanism to accumulate effector cells in inflammation Proc Natl Acad Sci USA 1999 96: 13330–13335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weinmann P, Gaehtgens P, Walzog B . Bcl-XL- and Bax-alpha-mediated regulation of apoptosis of human neutrophils via caspase-3 Blood 1999 93: 3106–3115

    Article  CAS  PubMed  Google Scholar 

  42. Chuang PI, Yee E, Karsan A, Winn RK, Harlan JM . A1 is a constitutive and inducible Bcl-2 homologue in mature human neutrophils Biochem Biophys Res Commun 1998 249: 361–365

    Article  CAS  PubMed  Google Scholar 

  43. Orlofsky A, Somogyi RD, Weiss LM, Prystowsky MB . The murine antiapoptotic protein A1 is induced in inflammatory macrophages and constitutively expressed in neutrophils J Immunol 1999 163: 412–419

    CAS  PubMed  Google Scholar 

  44. Hamasaki A, Sendo F, Nakayama K, Ishida N, Negishi I, Nakayama KI, Hatakeyama S . Accelerated neutrophil apoptosis in mice lacking A1-a, a subtype of the bcl-2-related A1 gene J Exp Med 1998 188: 1985–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Druilhe A, Arock M, LeGoff L, Pretolani M . Human eosinophils express Bcl-2 family proteins: modulation of Mcl-1 expression by INF-gamma Am J Respir Cell Mol Biol 1998 18: 315–322

    Article  CAS  PubMed  Google Scholar 

  46. Zangrilli J, Robertson N, Shetty A, Wu J, Hastie A, Fish JE, Litwack G, Peters SP . Effect of IL-5, glucocorticoid, and Fas ligation on Bcl-2 homologue expression and caspase activation in circulating human eosinophils Clin Exp Immunol 2000 120: 12–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dewson G, Walsh GM, Wardlaw AJ . Expression of Bcl-2 and its homologues in human eosinophils. Modulation by interleukin-5 Am J Respir Cell Mol Biol 1999 20: 720–728

    Article  CAS  PubMed  Google Scholar 

  48. Dibbert B, Daigle I, Braun D, Schranz C, Weber M, Blaser K, Zangemeister-Wittke U, Akbar AN, Simon HU . Role for Bcl-xL in delayed eosinophil apoptosis mediated by granulocyte–macrophage colony-stimulating factor and interleukin-5 Blood 1998 92: 778–783

    Article  CAS  PubMed  Google Scholar 

  49. Ochiai K, Kagami M, Matsumura R, Tomioka H . IL-5 but not interferon-gamma (IFN-gamma) inhibits eosinophil apoptosis by up-regulation of bcl-2 expression Clin Exp Immunol 1997 107: 198–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Katoh N, Kraft S, Wessendorf JH, Bieber T . The high-affinity IgE receptor (FcepsilonRI) blocks apoptosis in normal human monocytes J Clin Invest 2000 105: 183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sevilla L, Zaldumbide A, Carlotti F, Dayem MA, Pognonec P, Boulukos KE . BCLX expression correlates with primary macrophage differentiation, activation of functional competence, and survival and results from synergistic transcriptional activation by Ets2 and Pu.1 J Biol Chem 2001 276: 17800–17807

    Article  CAS  PubMed  Google Scholar 

  52. Klampfer L, Cammenga J, Wisniewski HG, Nimer SD . Sodium salicylate activates caspases and induces apoptosis of myeloid leukemia cell lines Blood 1999 93: 2386–2394

    Article  CAS  PubMed  Google Scholar 

  53. Lomo J, Smeland EB, Krajewski S, Reed JC, Blomhoff HK . Expression of the Bcl-2 homologue Mcl-1 correlates with survival of peripheral blood B lymphocytes Cancer Res 1996 56: 40–43

    CAS  PubMed  Google Scholar 

  54. Lomo J, Blomhoff HK, Jacobsen SE, Krajewski S, Reed JC, Smeland EB . Interleukin-13 in combination with CD40 ligand potently inhibits apoptosis in human B lymphocytes: upregulation of Bcl-xL and Mcl-1 Blood 1997 89: 4415–4424

    Article  CAS  PubMed  Google Scholar 

  55. Myklebust JH, Josefsen D, Blomhoff HK, Levy FO, Naderi S, Reed JC, Smeland EB . Activation of the cAMP signaling pathway increases apoptosis in human B-precursor cells and is associated with downregulation of Mcl-1 expression J Cell Physiol 1999 180: 71–80

    Article  CAS  PubMed  Google Scholar 

  56. Li L, Krajewski S, Reed JC, Choi YS . The apoptosis and proliferation of SAC-activated B cells by IL-10 are associated with changes in Bcl-2, Bcl-xL, and Mcl-1 expression Cell Immunol 1997 178: 33–41

    Article  CAS  PubMed  Google Scholar 

  57. Wang S, Rowe M, Lundgren E . Expression of the Epstein–Barr virus transforming protein LMP1 causes a rapid and transient stimulation of the Bcl-2 homologue Mcl-1 levels in B-cell lines Cancer Res 1996 56: 4610–4613

    CAS  PubMed  Google Scholar 

  58. Kenney JL, Guinness ME, Curiel T, Lacy J . Antisense to the Epstein–Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) suppresses LMP-1 and bcl-2 expression and promotes apoptosis in EBV-immortalized B cells Blood 1998 92: 1721–1727

    Article  CAS  PubMed  Google Scholar 

  59. Henderson S, Rowe M, Gregory C, Croom-Carter D, Wang F, Longnecker R, Kieff E, Rickinson A . Induction of bcl-2 expression by Epstein–Barr virus latent membrane protein 1 protects infected B cells from programmed cell death Cell 1991 65: 1107–1115

    Article  CAS  PubMed  Google Scholar 

  60. Finke J, Fritzen R, Ternes P, Trivedi P, Bross KJ, Lange W, Mertelsmann R, Dolken G . Expression of bcl-2 in Burkitt's lymphoma cell lines: induction by latent Epstein–Barr virus genes Blood 1992 80: 459–469

    Article  CAS  PubMed  Google Scholar 

  61. Altmeyer A, Simmons RC, Krajewski S, Reed JC, Bornkamm GW, Chen-Kiang S . Reversal of EBV immortalization precedes apoptosis in IL-6-induced human B cell terminal differentiation Immunity 1997 7: 667–677

    Article  CAS  PubMed  Google Scholar 

  62. Puthier D, Thabard W, Rapp MJ, Etrillard M, Harousseau JL, Bataille R, Amiot M . Interferon alpha extends the survival of human myeloma cells through an upregulation of the Mcl-1 antiapoptotic molecule Br J Haematol 2001 112: 358–363

    Article  CAS  PubMed  Google Scholar 

  63. Jourdan M, De Vos J, Mechti N, Klein B . Regulation of Bcl-2-family proteins in myeloma cells by three myeloma survival factors: interleukin-6, interferon-alpha and insulin-like growth factor 1 Cell Death Diff 2000 7: 1244–1252

    Article  CAS  Google Scholar 

  64. Puthier D, Barille SD, Moreau P, Harousseau JL, Bataille R, Amiot M . Mcl-1 and BclxL are co-regulated by IL-6 in human myeloma cells Br J Haematol 1999 107: 392–395

    Article  CAS  PubMed  Google Scholar 

  65. Schwarze MM, Hawley RG . Prevention of myeloma cell apoptosis by ectopic bcl-2 expression or interleukin 6-mediated up-regulation of bcl-xL Cancer Res 1995 55: 2262–2265

    CAS  PubMed  Google Scholar 

  66. Leo CP, Hsu Sy, Chun S-Y, Bae H-Y, Hsueh AJW . Characterization of the antiapoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) and the stimulation of its message by gonadotropins in the rat ovary Endocrinology 1999 140: 5469–5477

    Article  CAS  PubMed  Google Scholar 

  67. Johnson AL . Mcl-1 – just another antiapoptotic Bcl-2 homolog? Endocrinology 1999 140: 5465–5467

    Article  CAS  PubMed  Google Scholar 

  68. Suzuki A, Umezawa A, Sano M, Nozawa S, Hata J . Involvement of EAT/mcl-1, a bcl-2 related gene, in the apoptotic mechanisms underlying human placental development and maintenance Placenta 2000 21: 177–183

    Article  CAS  PubMed  Google Scholar 

  69. Zhan Q, Bieszczad CK, Bae I, Fornace A Jr, Craig RW . Induction of Bcl-2 family member Mcl-1 as an early response to DNA damage Oncogene 1997 14: 1031–1039

    Article  CAS  PubMed  Google Scholar 

  70. Goldwasser F, Bae I, Fornace AJ, Pommier Y . Differential GADD45, p21CIP/WAF1, MCL-1 and topoisomerase II gene induction and secondary DNA fragmentation after camptothecin-induced DNA damage in two mutant p53 human colon cancer cell lines Oncol Res 1996 8: 317–323

    CAS  PubMed  Google Scholar 

  71. Zhan Q, Fan S, Bae I, Guillouf C, Liebermann DA, O'Connor PM, Fornace AJ Jr . Induction of BAX by genotoxic stress in human cells correlates with normal p53 status and apoptosis Oncogene 1994 9: 3743–3751

    CAS  PubMed  Google Scholar 

  72. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC . Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo Oncogene 1994 9: 1799–1805

    CAS  PubMed  Google Scholar 

  73. Zhan Q, Alamo I, Yu K, Boise LH, Cherney B, Tosato G, O'Connor PM, Fornace AJ Jr . The apoptosis-associated gamma-ray response of BCL-X(L) depends on normal p53 function Oncogene 1996 13: 2287–2293

    CAS  PubMed  Google Scholar 

  74. Matsushita K, Umezawa A, Iwanaga S, Oda T, Okita H, Kimura K, Shimada M, Tanaka M, Sano M, Ogawa S, Hata J . The EAT/mcl-1 gene, an inhibitor of apoptosis, is up-regulated in the early stage of myocardial infarction Biochim Biophys Acta 1999 1472: 471–478

    Article  CAS  PubMed  Google Scholar 

  75. Wu CF, Bishopric NH, Pratt RE . Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes J Biol Chem 1997 19: 6195–6206

    Google Scholar 

  76. Murdock DG, Boone BE, Esposito LA, Wallace DC . Up-regulation of nuclear and mitochondrial genes in the skeletal muscle of mice lacking the heart/muscle isoform of the adenine nucleotide translocator J Biol Chem 1999 274: 14429–14433

    Article  CAS  PubMed  Google Scholar 

  77. Vaux DL, Cory S, Adams J . Bcl-2 gene promotes hemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells Nature 1988 335: 440–442

    Article  CAS  PubMed  Google Scholar 

  78. Cory S, Vaux DL, Strasser A, Harris AW, Adams JM . Insights from Bcl-2 and Myc: malignancy involves abrogation of apoptosis as well as sustained proliferation Cancer Res 1999 59S7: 1685–1692

    Google Scholar 

  79. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA . Creation of human tumour cells with defined genetic elements Nature 1999 400: 464–468

    Article  CAS  PubMed  Google Scholar 

  80. Zhou P, Levy NB, Xie H, Qian L, Gascoyne RD, Craig RW . MCL1 transgenic mice exhibit a high incidence of B cell lymphoma manifested as a spectrum of histologic subtypes Blood 2001 97: 3902–3909

    Article  CAS  PubMed  Google Scholar 

  81. McDonnell TJ, Korsmeyer SJ . Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18) Nature 1991 349: 254–256

    Article  CAS  PubMed  Google Scholar 

  82. Townsend KJ, Zhou P, Bieszczad CK, Qian L, Craig RW . Regulation of MCL1 by a serum response factor/Elk-1-mediated mechanism links expression of a viability-promoting member of the Bcl-2 family to the induction of hematopoietic cell differentiation J Biol Chem 1999 274: 1802–1813

    Article  Google Scholar 

  83. Leuenroth SJ, Grutkoski PS, Ayala A, Simms HH . Suppression of PMN apoptosis by hypoxia is dependent on Mcl-1 and MAPK activity Surgery 2000 128: 171–177

    Article  CAS  PubMed  Google Scholar 

  84. Boucher MJ, Morisset J, Vachon PH, Reed JC, Laine J, Rivard N . MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cells J Cell Biochem 2000 79: 355–369

    Article  CAS  PubMed  Google Scholar 

  85. Leu CM, Chang C, Hu C . Epidermal growth factor (EGF) suppresses staurosporine-induced apoptosis by inducing mcl-1 via the mitogen-activated protein kinase pathway Oncogene 2000 19: 1665–1675

    Article  CAS  PubMed  Google Scholar 

  86. Kuo ML, Chuang SE, Lin MT, Yang SY . The involvement of PI3K/Akt-dependent upregulation of Mcl-1 in the prevention of apoptosis of Hep3B cells by interleukin-6 Oncogene 2001 20: 677–685

    Article  CAS  PubMed  Google Scholar 

  87. Wang JM, Chao J-R, Chen W, Kuo M-L, Yen JJY, Yang-Yen HF . The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB Mol Cell Biol 1999 19: 6195–6206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Puthier D, Bataille R, Amiot M . IL-6 up-regulates mcl-1 in human myeloma cells through JAK/STAT rather than ras/MAP kinase pathway Eur J Immunol 1999 29: 3945–3950

    Article  CAS  PubMed  Google Scholar 

  89. Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R, Li Y, Wang JM, Yang-Yen HF, Karras J, Jove R, Loughran TP Jr . Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression J Clin Invest 2001 107: 351–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Epling-Burnette PK, Zhong B, Bai F, Jiang K, Bailey RD, Garcia R, Jove R, Djeu JY, Loughran TP Jr, Wei S . Cooperative regulation of Mcl-1 by Janus kinase/stat and phosphatidylinositol 3-kinase contribute to granulocyte–macrophage colony-stimulating factor-delayed apoptosis in human neutrophils J Immunol 2001 166: 7486–7495

    Article  CAS  PubMed  Google Scholar 

  91. Bingle CD, Craig RW, Hanks BM, Eaton V, Zhou P, Whyte MKB . Exon skipping in Mcl-1 results in a Bcl-2 homology domain 3 (BH3)-only gene product that promotes cell death J Biol Chem 2000 275: 22136–22146

    Article  CAS  PubMed  Google Scholar 

  92. Gross A, McDonnell JM, Korsmeyer SJ . BCL-2 family members and the mitochondria in apoptosis Genes Dev 1999 13: 632–640

    Article  Google Scholar 

  93. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka L, Mao X, Nunez G, Thompson CB . bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death Cell 1993 74: 597–608

    Article  CAS  PubMed  Google Scholar 

  94. Domina A, Smith JH, Craig RW . Myeloid cell leukemia 1 is phosphorylated through two distinct pathways, one involving ERK activation and the other G2/M accumulation or protein phosphatase 1/2A inhibition J Biol Chem 2000 275: 21688–21694

    Article  CAS  PubMed  Google Scholar 

  95. Ito T, Deng X, Carr B, May WS . Bcl-2 phosphorylation required for anti-apoptosis function J Biol Chem 1997 272: 11671–11673

    Article  CAS  PubMed  Google Scholar 

  96. Haldar S, Jena N, Croce CM . Antiapoptosis potential of bcl-2 oncogene by dephosphorylation Biochem Cell Biol 1994 72: 455–462

    Article  CAS  PubMed  Google Scholar 

  97. Haldar S, Jena N, Croce CM . Inactivation of Bcl-2 by phosphorylation Proc Natl Acad Sci USA 1995 92: 4507–4511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Haldar S, Chintapalli J, Croce CM . Taxol induces bcl-2 phosphorylation and death of prostate cancer cells Cancer Res 1996 56: 1253–1255

    CAS  PubMed  Google Scholar 

  99. Haldar S, Basu A, Croce CM . Bcl2 is the guardian of microtubule integrity Cancer Res 1997 57: 229–233

    CAS  PubMed  Google Scholar 

  100. Haldar S, Basu A, Croce CM . Serine-70 is one of the critical sites for drug-induced Bcl2 phosphorylation in cancer cells Cancer Res 1998 58: 1609–1615

    CAS  PubMed  Google Scholar 

  101. Deng X, Ito T, Carr B, Mumby M, May WS Jr . Reversible phosphorylation of Bcl2 following interleukin 3 or bryostatin 1 is mediated by direct interaction with protein phosphatase 2A J Biol Chem 1998 273: 34157–34163

    Article  CAS  PubMed  Google Scholar 

  102. Deng X, Ruvolo PP, Carr B, May WS . ERK2 is a physiologic staurosporin-resistant Bcl2 kinase (SRK) Proc Am Assoc Cancer Res 1999 40: 307

    Google Scholar 

  103. Vrana JA, Domina AM, Craig RW . Stabilization of MCL1 protein by PKC/MAP kinase activation Proc Am Assoc Cancer Res 2001 42: 307

    Google Scholar 

  104. Breitschopf K, Haendeler J, Malchow P, Zeiher AM, Dimmeler S . Posttranscriptional modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway Mol Cell Biol 2000 20: 1886–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Akgul C, Moulding DA, White MRH, Edwards SW . In vivo localization and stability of human Mcl-1 using green fluorescent protein (GFP) fusion proteins FEBS Lett 2000 478: 72–76

    Article  CAS  PubMed  Google Scholar 

  106. Gascoyne RD, Adomat SA, Krajewski S, Krajewska M, Horsman DE, Tolcher AW, O'Reilly SE, Hoskins P, Coldman AJ, Reed JC, Connors JM . Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin's lymphoma Blood 1997 90: 244–251

    Article  CAS  PubMed  Google Scholar 

  107. Reed JC . Molecular biology of chronic lymphocytic leukemia: Implications for therapy Semin Hematol 1998 35: 3–11

    CAS  PubMed  Google Scholar 

  108. Tsujimoto Y, Croce CM . Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma Proc Natl Acad Sci USA 1986 83: 5214–5218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mercatante DR, Bortner CD, Cidlowski JA, Kole R . Modification of alternative splicing of Bcl-x pre-mRNA in prostate and breast cancer cells: analysis of apoptosis and cell death J Biol Chem 2001 276: 16411–16417

    Article  CAS  PubMed  Google Scholar 

  110. Pepper C, Hoy T, Bentley P . Elevated Bcl-2/Bax are a consistent feature of apoptosis resistance in B-cell chronic leukaemia and are correlated with in vivo chemoresistance Leuk Lymphoma 1998 28: 355–361

    Article  CAS  PubMed  Google Scholar 

  111. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S, Wang HG, Zhang X, Bullrich F, Croce CM, Rai K, Hines J, Reed JC . Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses Blood 1998 91: 3379–3389

    Article  CAS  PubMed  Google Scholar 

  112. Bellosillo B, Villamor N, Colomer D, Pons G, Montserrat E, Gil J . In vitro evaluation of fludarabine in combination with cyclophosphamide and/or mitoxantrone in B-cell chronic lymphocytic leukemia Blood 1999 94: 2836–2843

    Article  CAS  PubMed  Google Scholar 

  113. Kitada S, Zapata JM, Andreeff M, Reed JC . Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine down-regulate antiapoptosis proteins in B-cell chronic lymphocytic leukemia Blood 2000 96: 393–397

    Article  CAS  PubMed  Google Scholar 

  114. Kaufmann SH, Karp JE, Svingen PA, Krajewski S, Burke PJ, Gore SD, Reed JC . Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse Blood 1998 91: 991–1000

    Article  CAS  PubMed  Google Scholar 

  115. Nicholson DW . From bench to clinic with apoptosis-based therapeutic agents Nature 2000 407: 810–816

    Article  CAS  PubMed  Google Scholar 

  116. Konopleva M, Tari AM, Estrov Z, Harris D, Xie Z, Zhao S, Lopez-Berestein G, Andreeff M . Liposomal Bcl-2 antisense oligonucleotides enhance proliferation, sensitize acute myeloid leukemia to cytosine-arabinoside, and induce apoptosis independent of other antiapoptotic proteins Blood 2001 95: 3929–3938

    Article  Google Scholar 

  117. Korsmeyer SJ . BCL-2 gene family and the regulation of programmed cell death Cancer Res 1999 59S: 1693–1700

    Google Scholar 

  118. Bissonnette RP, Echeverri F, Mahboubi A, Green DR . Apoptotic cell death induced by c-myc is inhibited by bcl-2 Nature 1992 359: 552–554

    Article  CAS  PubMed  Google Scholar 

  119. Cotter FE, Waters J, Cunningham D . Human Bcl-2 antisense therapy Biochim Biophys Acta 1999 1489: 97–107

    Article  CAS  PubMed  Google Scholar 

  120. Lopes de Menezes DE, Hudon N, McIntosh N, Mayer LD . Molecular and pharmacokinetic properties associated with the therapeutics of bcl-2 antisense oligonucleotide G3139 combined with free and liposomal doxorubicin Clin Cancer Res 2000 6: 2891–2902

    CAS  PubMed  Google Scholar 

  121. Simoes-Wust AP, Olie RA, Gautschi O, Leech SH, Haner R, Hall J, Fabbro D, Stahel RA, Zangemeister-Wittke U . Bcl-xl antisense treatment induces apoptosis in breast carcinoma cells Int J Cancer 2000 87: 582–590

    Article  CAS  PubMed  Google Scholar 

  122. Miyake H, Monia BP, Gleave ME . Inhibition of progression to androgen-independence by combined adjuvant treatment with BCL-XL and antisense BCL-2 oligonucleotides plus taxol after castration in the Shionogi tumor model Int J Cancer 2000 86: 855–862

    Article  CAS  PubMed  Google Scholar 

  123. Klasa RJ, Bally MB, Ng R, Goldie JH, Gascoyne RD, Wong FM . Eradication of human non-Hodgkin's lymphoma in SCID mice by BCL-2 antisense oligonucleotides combined with low-dose cyclophosphamide Clin Cancer Res 2000 6: 2492–2500

    CAS  PubMed  Google Scholar 

  124. Julien T, Frankel B, Longo S, Kyle M, Gibson S, Shillitoe E, Ryken T . Antisense-mediated inhibition of the bcl-2 gene induces apoptosis in human malignant glioma Surg Neurol 2000 53: 360–368

    Article  CAS  PubMed  Google Scholar 

  125. Uchida T, Gao JP, Wang C, Satoh T, Itoh I, Muramoto M, Hyodo T, Irie A, Akahoshi T, Jiang SX, Kameya T, Baba S . Antitumor effects of bcl-2 antisense phosphorothioate oligodeoxynucleotides on human renal-cell carcinoma cells in vitro and in mice Molec Urol 2001 5: 71–78

    Article  CAS  Google Scholar 

  126. Jansen B, Wacheck V, Heere-Rees E, Schlagbauer-Wadl H, Hoeller C, Lucas T, Hoermann M, Hollenstein U, Wolff K, Pehamberger H . Chemosensitisation of malignant melanoma by BCL2 antisense therapy Lancet 2000 356: 1728–1733

    Article  CAS  PubMed  Google Scholar 

  127. Leung S, Miyake H, Zellweger T, Tolcher A, Gleave ME . Synergistic chemosensitization and inhibition of progression to androgen independence by antisense Bcl-2 oligonucleotide and paclitaxel in the LNCaP prostate model Int J Cancer 2001 91: 846–850

    Article  CAS  PubMed  Google Scholar 

  128. Zangemeister-Wittke U, Leech SH, Olie RA, Simoes-Wust AP, Gautschi O, Luedke GH, Natt F, Haner R, Martin P, Hall J, Balin CM, Stahel RA . A novel bispecific antisense oligonucleotide inhibiting both bcl-2 and Bcl-xL expression efficiently induces apoptosis in tumor cells Clin Cancer Res 2000 6: 2547–2555

    CAS  PubMed  Google Scholar 

  129. Gautschi O, Tschopp S, Olie RA, Leech SH, Simoes-Wust AP, Ziegler A, Baumann B, Odermatt B, Hall J, Stahel RA, Zangemeister-Wittke U . Activity of a novel bcl-2/bcl-x bispecific antisense oligonucleotide against tumors of diverse histologic origins J Natl Cancer Inst 2001 93: 463–471

    Article  CAS  PubMed  Google Scholar 

  130. Mier W, Eritja R, Mohammed A, Haberkorn U, Eisenhut M . Preparation and evaluation of tumor-targeting peptide-oligonucleotide conjugates Bioconj Chem 2000 11: 855–860

    Article  CAS  Google Scholar 

  131. Potter PM, McKenzie PP, Hussain N, Noonberg S, Morton CL, Harris LC . Construction of adenovirus for high level expression of small RNAs in mammalian cells. Application to a Bcl-2 ribozyme Mol Biotechnol 2000 15: 105–114

    Article  CAS  PubMed  Google Scholar 

  132. Fairbairn LJ, Cowling GJ, Reipert BM, Dexter TM . Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors Cell 1993 74: 823–832

    Article  CAS  PubMed  Google Scholar 

  133. Raff MC . Social controls on cell survival and cell death Nature 1992 356: 397–400

    Article  CAS  PubMed  Google Scholar 

  134. Schubert KM, Duronio V . Distinct roles for extracellular-signal-regulated kinase (ERK) mitogen-activated protein kinases and phosphatidylinositol 3-kinase in the regulation of Mcl-1 synthesis Biochem J 2001 356: 473–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper was written with gratitude to Dr Alexander Bloch, who set the author on a good path both experimentally and intellectually. The thorough and insightful review of the manuscript by Drs Alan Eastman and Julie Vrana is very much appreciated. This work was supported by a grant from the National Institute of Health (CA57359).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, R. MCL1 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis. Leukemia 16, 444–454 (2002). https://doi.org/10.1038/sj.leu.2402416

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402416

Keywords

This article is cited by

Search

Quick links