Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on Chronic Lymphocytic Leukemia

Expression profile of 11 proteins and their prognostic significance in patients with chronic lymphocytic leukemia (CLL)

Abstract

It has been suggested that the expansion of the leukemic cells in chronic lymphocytic leukemia (CLL) is due to dysregulation of pathways of programmed cell death (apoptosis) rather than cell proliferation, although differences may exist in early vs late and treated vs untreated patients. In the present study, we analyzed the expression of 11 proteins in CLL cells that are implicated in the control of apoptosis, proliferation, and differentiation, and correlated this expression profile with survival. Using a quantitative solid-phase radioimmunoassay (RIA), we measured the cellular protein levels of Bcl-2, cyclin D1, PCNA, ATM, Fas, Bax, retinoic acid receptor alpha (RARα), retinoic acid receptor beta (RXRβ), Flt1, VEGF, and cellular β2-microglobulin in 230 samples of CLL. Univariate analysis using the Cox proportional hazard model showed a correlation with survival of only the following proteins: Bcl-2 (P < 0.001), cyclin D1 (P = 0.027), Fas (P = 0.055), PCNA (P < 0.001), and ATM (P = 0.028). In a multivariate analysis using classification and regression tree analysis (CART), five groups of patients (nodes) could be generated with significant differences of survival expectation (P < 0.0001) based on levels of expression of the above proteins. Based on CART analysis, Bcl-2 levels emerge as the most important protein in predicting survival between all 11 proteins studied. Patients with marked elevation in Bcl-2 levels had the worst outcome while patients with intermediate levels, but with high levels of PCNA and cyclin D1 or abnormal ATM expression had intermediate survival. These data indicate that intracellular levels of proteins such as Bcl-2, ATM, cyclin D1, and PCNA can be used as markers to predict clinical behavior and survival in patients with CLL. The pathways in which these proteins are involved may also represent possible targets for future therapeutic trials in CLL.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS . Clinical staging of chronic lymphocytic leukemia Blood 1975 46: 219–234

    CAS  PubMed  Google Scholar 

  2. Binet JL, Catovsky D, Chandra P . Chronic lymphocytic leukemia: proposals for a revised prognostic staging system Br J Haematol 1981 48: 365–367

    Article  Google Scholar 

  3. Sarfati M, Chevret S, Chastang C, Biron G, Styckmans P, Delespesse G, Binet JL . Prognostic importance of serum soluble CD23 level in chronic lymphocytic leukemia Blood 1996 88: 4259–4264

    CAS  PubMed  Google Scholar 

  4. Keating M, Lerner S, Kantarjian H, O'Brien S, Beran M, Koller C, Andreeff M, Rios MB, Freireich E, Talpaz M . The serum beta2-microglobulin level is more powerful that stage in predicting response and survival in chronic lymphocytic leukemia Blood 1995 86: 606a

    Google Scholar 

  5. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Staudt LM . Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling Nature 2000 403: 503–511

    Article  CAS  PubMed  Google Scholar 

  6. Reed JC . Molecular biology of chronic lymphocytic leukemia Semin Oncol 1998 25: 11–18

    CAS  PubMed  Google Scholar 

  7. Hanada M, Delia D, Aiello A, Stadmauer E, Reed JC . bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia Blood 1993 82: 1820–1828

    CAS  PubMed  Google Scholar 

  8. Pepper C, Bentley P, Hoy T . Regulation of clinical chemoresistance by bcl-2 and bax oncoproteins in B-cell chronic lymphocytic leukemia Br J Haematol 1996 95: 513–517

    Article  CAS  PubMed  Google Scholar 

  9. Cohen GM . Caspases: the executioners of apoptosis Biochem J 1997 326: 1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bellosillo B, Dalmau M, Colomer D, Gil J . Involvement of CED-3/ICE proteases in the apoptosis of B-chronic lymphocytic leukemia cells Blood 1997 89: 3378–3384

    CAS  PubMed  Google Scholar 

  11. Del Giglio A, O'Brien S, Ford R, Saya H, Manning J, Keating M, Johnston D, Khetan R, El-Naggar A, Deisseroth A . Prognostic value of proliferating cell nuclear antigen expression in chronic lymphoid leukemia Blood 1992 79: 2717–2720

    CAS  PubMed  Google Scholar 

  12. Del Giglio A, O'Brien S, Ford RJ Jr, Manning J, Saya H, Keating M, Johnston D, Chamone DF, Deisseroth AB . Proliferating cell nuclear antigen (PCNA) expression in chronic lymphocytic leukemia (CLL) Leuk Lymphoma 1993 10: 265–271

    Article  CAS  PubMed  Google Scholar 

  13. Starostik P, Manshouri T, O'Brien S, Freireich E, Kantarjian H, Haidar M, Lerner S, Keating M, Albitar M . Deficiency of the ATM protein expression defines an aggressive subgroup of B-cell chronic lymphocytic leukemia Cancer Res 1998 58: 4552–4557

    CAS  PubMed  Google Scholar 

  14. Schaffner C, Stilgenbauer S, Rappold GA, Donner H, Lichter P . Somatic ATM mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia Blood 1999 94: 748–753

    CAS  PubMed  Google Scholar 

  15. Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D, Koller C, Estrov Z, O'Brien S, Keating M, Freireich E, Albitar M . Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes Blood 2000 96: 2240–2245

    CAS  PubMed  Google Scholar 

  16. Bennett JM, Catovsky D, Daniel M-T, Flandrin G, Galton DA, Gralnick HR, Sultan C . Proposals for the classification of chronic (mature) B and T lymphoid leukemias J Clin Pathol 1989 42: 567–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haidar MA, El-Hajj H, Bueso-Ramos CE, Manshouri T, Glassman A, Keating MJ, Maher A . Expression profile of MDM-2 proteins in chronic lymphocytic leukemia and their clinical relevance Am J Hematol 1997 54: 189–195

    Article  CAS  PubMed  Google Scholar 

  18. Kaplan EL, Meier P . Non-parametric estimation from incomplete observations J Am Stat Assoc 1958 53: 457–481

    Article  Google Scholar 

  19. Peto R . Clinical trial methodology Biomedicine 1978 28: 24–36

    PubMed  Google Scholar 

  20. Cox DR . Regression models and life tables JR Stat Soc [B] 1972 34: 187–220

    Google Scholar 

  21. Breiman L, Friedman JH, Olshen RA, Stone CJ . Classification and Regression Trees Wadsworth International Group: California 1984

    Google Scholar 

  22. Schmoor C, Ulm K, Schumacher M . Comparison of the Cox model and the regression tree procedure in analyzing a randomized clinical trial Stat Med 1993 12: 2351–2366

    Article  CAS  PubMed  Google Scholar 

  23. Jass JR, Do K-A, Simms LA, Iino H, Wynter C, Pillay SP, Searle J, Radford-Smith G, Young L, Leggett B . Morphology of sporadic colorectal cancer with DNA replication errors GUT 1997 42: 673–679

    Article  Google Scholar 

  24. Treloar SA, Do K-A, O'Connor VM, O'Connor DT, Yeo MA, Martin NG . Predictors of hysterectomy: an Australian study Amer J Obstet Gynecol 1999 180: 945–954

    Article  CAS  Google Scholar 

  25. Kuhnert P, Do K-A, McClure R . Visualizing multivariate models with focus on MARS in an epidemiological case–control study Comput Stat Data Anal 2000 34: 371–386

    Article  Google Scholar 

  26. Hess KR, Abruzzese MC, Lenzi R, Raber MN, Abruzzese JL . Classification and regression tree analysis of 1000 consecutive patients with unknown primary carcinoma Clin Cancer Res 1999 5: 3403–3410

    CAS  PubMed  Google Scholar 

  27. Therneau T, Grambsch P, Fleming T . Martingale based residuals for survival models Biometrika, 1990 77: 147–160

    Article  Google Scholar 

  28. Venables WN, Ripley BD . Modern applied statistics with Splus In Tree-Based Methods Springer-Verlag: New York 1994 pp 329–347

    Google Scholar 

  29. LeBlanc M, Crowley J . Relative risk trees for censored survival data Biometrics 1992 48: 411–425

    Article  CAS  PubMed  Google Scholar 

  30. Clark LA, Pregibon D . Tree-based models In: Chambers JM, Hastie TJ (eds) Statistical Models in S-Plus Wadsworth & Brooks/Cole: Pacific Grove, CA 1992 pp 377–499

    Google Scholar 

  31. Efron B, Tibshirani RJ . An Introduction to the Bootstrap Chapman & Hall: New York 1993

    Book  Google Scholar 

  32. Mariano MT, Moretti L, Donelli A, Grantini M, Mantagnani G, Di Prisco AU, Torelli G, Torelli U, Nanrni F . bcl-2 gene expression in hematopoietic cell differentiation Blood 1992 80: 768–775

    CAS  PubMed  Google Scholar 

  33. Keating MJ . Chronic lymphocytic leukemia in the next decade: where do we go from here? Semin Hematol 1998 35: 27–33

    CAS  PubMed  Google Scholar 

  34. Ravandi-Kashani F, O'Brien S, Manshouri T, Lerner S, Sim S, Dodd K, Kantarjian H, Freireich E, Keating M, Albitar M . Variations in the low levels of cyclin D1/BCL1 have prognostic value in chronic lymphocytic leukemia Leuk Res 2000 24: 469–474

    Article  CAS  PubMed  Google Scholar 

  35. Thomas A, El Rouby S, Reed JC, Krajewski S, Silbert R, Potmesil M, Newcomb EW . Drug-induced apoptosis in B-cell chronic lymphocytic leukemia: relationship between p53 gene mutation and bcl-2/bax proteins in drug resistance Oncogene 1996 12: 1055–1062

    CAS  PubMed  Google Scholar 

  36. Robertson LE, Plunkett W, McConnell K, Keating MJ, McDonnell TJ . Bcl-2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome Leukemia 1996 10: 456–459

    CAS  PubMed  Google Scholar 

  37. Panayiotidis P, Ganeshaguru K, Foroni L, Hoffbrand AV . Expression and function of the FAS antigen in B chronic lymphocytic leukemia and hairy cell leukemia Leukemia 1995 9: 1227–1232

    CAS  PubMed  Google Scholar 

  38. Bosanquet AG, Bell PB, Rooney N . Effect of interleukin-2 on CD95 (Fas/APO-1) expression in fresh chronic lymphocytic leukemia and mantle cell lymphoma cells: relationship to ex vivo chemoresponse Anticancer Res 1999 19: 5329–5334

    CAS  PubMed  Google Scholar 

  39. Williams JF, Petrus MJ, Wright JA, Husebekk A, Fellowes V, Read EJ, Gress RE, Fowler DH . Fas-mediated lysis of chronic lymphocytic leukemia cells: role of type I versus type II cytokines and autologous fasL-expressing T cells Br J Haematol 1999 107: 99–105

    Article  CAS  PubMed  Google Scholar 

  40. Haidar MA, Kantarjian H, Manshouri T, Chang CY, O'Brien S, Freireich E, Keating M, Albitar M . ATM gene deletion in patients with adult acute lymphoblastic leukemia Cancer 2000 88: 1057–1062

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faderl, S., Keating, M., Do, KA. et al. Expression profile of 11 proteins and their prognostic significance in patients with chronic lymphocytic leukemia (CLL). Leukemia 16, 1045–1052 (2002). https://doi.org/10.1038/sj.leu.2402540

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402540

Keywords

This article is cited by

Search

Quick links